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Formal methods encompass a wide choice of techniques and tools for the speciication, development, analysis, and veriication

of software and hardware systems. Formal methods are widely applied in industry, in activities ranging from the elicitation of

requirements and the early design phases all the way to the deployment, coniguration, and runtime monitoring of actual

systems. Formal methods allow one to precisely specify the environment in which a system operates, the requirements and

properties that the system should satisfy, the models of the system used during the various design steps, and the code embedded

in the inal implementation, as well as to express conformance relations between these speciications. We present a broad scope
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of successful applications of formal methods in industry, not limited to the well-known success stories from the safety-critical

domain, like railways and other transportation systems, but also covering other areas such as lithography manufacturing and

cloud security in e-commerce, to name but a few. We also report testimonies from a number of representatives from industry

who, either directly or indirectly, use or have used formal methods in their industrial project endeavours. These persons

are spread geographically, including Europe, Asia, North and South America, and the involved projects witness the large

coverage of applications of formal methods, not limited to the safety-critical domain. We thus make a case for the importance

of formal methods, and in particular of the capacity to abstract and mathematical reasoning that are taught as part of any

formal methods course. These are fundamental Computer Science skills that graduates should proit from when working as

computer scientists in industry, as conirmed by industry representatives.

CCS Concepts: · Software and its engineering→ Formal methods; · Social and professional topics→ Computer

science education.

Additional Key Words and Phrases: Formal Methods, Computer Science Education

1 Introduction

Formal methods collectively refer to an array of methods for mathematically specifying and verifying computer-
system behaviour. In such approaches, systems are interpreted as mathematically precise structures, whether as
state machines, as functions mapping initial to inal states, or as logical formulas describing system behaviour.
Speciications also are given in a mathematically well-founded manner, whether as logical properties or state
machines, and the notion of a system satisfying a speciication is also given a mathematical deinition. Given
these elements, formally verifying a system involves constructing a mathematical proof that the system satisies
the speciication. The key motivation for these techniques is the strength of the correctness guarantees they
provide: in contrast to testing-based and inspection-based techniques, a proof conclusively demonstrates that the
system in question, at the level of abstraction that it is presented, is correct with respect to its speciication. Formal
methods complement other veriication and validation techniques, such as testing or simulation [169].
Formal methods have been studied in the computing community since at least the 1960s, with seminal work

by Floyd [133], Hoare [170], and Dijkstra [113] deining techniques for proving programs correct. Later work by
Pnueli, Lamport, Clarke, Emerson, and others considered the automated veriication of state machines vis à vis
properties in temporal logics [87, 201, 256]. Still others, including Boyer, Moore, Gordon, and Coquand [66, 100,
152], developed automated theorem provers for checking the correctness of veriication proofs. Later researchers
have built on and improved these eforts, and formal methods remain a vital and fundamental area of basic
computing research. Notably, the Cost of Poor Software Quality (CPSQ) is astonishing. In the 2022 Report1 for
the CPQS in the US, the amount is considered at least US$ 2,41 trillion. Considering the more speciic cost of
inding and ixing bugs, the estimation is US$ 607 billion. Therefore, there is scope for applications of formal
methods and tools to improve this situation in several domains, much beyond the context of safety-critical
systems. Historical references from long-time advocates of formal methods relect on their industrial application
through the metaphors of myths and commandments of formal methods and invite their uptake in industry in
order to realize their beneits [29, 61ś65, 84, 102, 161, 162, 195, 227, 249, 276, 287, 298]. Throughout the last three
decades several major surveys of formal methods have appeared in the literature [90, 135, 138, 144, 299].

1https://www.it-cisq.org/
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This paper demonstrates that formal methods have wide-ranging practical value by reporting on the increasing
use of formal methods in industry, and it makes a case for the inclusion of formal methods as a separate topic in
Computer Science education. This is well agreed upon by the formal methods community. To make this point
better known to the Computer Science community at large and, in particular, to those involved in Computer
Science education, the remainder of this article develops as follows. First, in Section 2, we give more detail about
what formal methods are, precisely. Then, in Section 3, we survey the vast array of formal-methods applications,
much beyond the context of safety-critical systems2. In our brief survey, we cite speciic instances across a
variety of diferent domains of successful applications of the techniques in delivering systems that, by their
nature, must be reliable. These include very recent work, which was not available ive years ago when the most
recent above-mentioned surveys were conducted, as well as testimonies contributed by current industry leaders.
Next, in Section 4, we argue that undergraduate curricula should include formal methods as a topic, not only
because of their growing importance in industry, as witnessed by the evidence presented in this paper, but also
because formal methods contribute to cultivate abstract thinking, enabling students to better understand and
solve complex problems, and because of the discipline they instil in students as they learn to develop systems. In
the words of Rance Cleaveland, łstudents who learn formal methods are better developers, because they learn to
think about correctness while they are building systems.ž Further support for such statements can be found in [34]
and in the accompanying papers [118], which underlines the importance of formal methods thinking in Computer
Science education, and [70], which argues that every computer scientist needs to know formal methods: łsoftware
developers not being aware of the various beneits of formal methods cannot be called computer scientists or
software engineers.ž Finally, in Section 5, we conclude the paper.

2 Formal Methods and Tools

Complex, industrial systems typically come into being according to some standardized software development
methodology. Most methodologies distinguish diferent phases in the development of a system.While these phases
may difer across development methodologies, and carry diferent names, in general, there is a requirements
analysis phase, an architecture design phase, a system design phase, and an implementation phase. Each phase
yields a set of artefacts. Apart from describing the type of artefacts delivered at each phase in the development
of a system, a methodology also describes the validation and veriication methods and activities needed to
ensure the internal consistency of an artefact, and the consistency of artefacts across diferent phases. For
instance, the artefacts produced during the requirements phase need to be non-contradictory, whereas the
artefacts produced in the design phase need to be consistent with the artefacts delivered in the requirements
phase. Formal methods, and their implementation in widely available tools, provide automated, repeatable,
easily checkable evidence to support these needs. Triggered by their successful applications in industry, we
mostly focus on a posteriori veriication of (software) systems. We do not discuss in detail the veriication of
formal speciications of requirements nor the alternative of a priori veriication techniques, such as developing
correct-by-construction system implementations based on formal methods that provide correctness-preserving
reinement transformations (like in the seminal work on the reinement calculus and related calculi by Back [10],
Morris [231], and Morgan [230], based on Dijkstra’s guarded command language [114]).
In the remainder of this section, we irst deine and introduce formal methods in Section 2.1, after which we

provide an overview of selected formal methods and tools in Section 2.2.

2.1 What are Formal Methods?

2We survey formal-methods applications from well-known and representative domains, including papers and testimonies that have been

selected based on the expertise and experience of the authors, spread geographically as well as across diferent application domains.
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In line with [138], in this paper we deine formal methods as mathematically rigorous techniques for the
speciication, design, validation, and (manual or automated) veriication of software and (logical) hardware
systems. In short, formal methods enable checking that behaviours (statements in a formal semantics such as
mathematical logic) always hold in a system (speciied in a language with a formal semantics). They examine
the entire behaviour space of the system, covering all possible inputs, to provide assurance derived from a
mathematical proof that the speciied system’s behaviour is correct. In other words, formal methods address
the veriication problem: given formal deinitions of what a system does (�) and what it should do (�), formal
methods show that� satisies � . Intuitively, formal methods show that the system does what you think it should
do and nothing else.

That last part, łand nothing else,ž distinguishes exhaustive formal methods from non-exhaustive methods for
veriication, such as testing [14, 50, 58, 226] and simulation [181, 291]. These popular methods reason over the
input space of a system by producing a set of individual system executions. By aggregating a large set of executions,
they can provide probabilistic answers to questions such as: how often does some behaviour occur, how many
inputs produce a certain type of output, or how likely is something to occur. They can provide a proof of the
existence of a run of a system, such as a run that exhibits a fault, but since neither testing nor simulation explores
all possible system behaviour (state space), they can never show the absence of such a run. For that, we need
(exhaustive) formal methods.

Formal methods reason over the behaviour space of a system. They yield Boolean (typically true or false, not
probabilistic) answers to questions like: is it possible for something to occur, does this property hold for all system
executions, or even how many system execution paths lead to a certain output. While testing and simulation
involve executing the system many times to gather examples for veriication, formal methods tools generally
execute once but reason exhaustively over the complete set of system behaviours, covering all possible executions.
This is also why there is such a variety of formal methods (as opposed to a singular formal method) Ð diferent
methods scale diferently and diferent systems require diferent proof strategies to enable such exhaustive
reasoning. Successful application of formal methods requires some knowledge of the underlying system, and
therefore which formal method(s) to apply.

In practice, (exhaustive) formalmethods provide quite a diferent understanding of a system than non-exhaustive
or informal methods. Informal or semi-formal methods refer to techniques and tools that are not fully formal, i.e.,
lacking a precise and unambiguously deined syntax and semantics. Formal methods can prove both the presence
and the absence of given behaviour. Because mathematical proofs reason equally well over partially-deined
systems as fully-deined ones, formal methods can check systems starting from the earliest stages of the system
design. While simulation and testing require some form of executable to run, formal methods do not. Nor are
formal methods sensitive to systems being used in ways they were not intended, such as receiving unanticipated
inputs. These are precisely the properties that make formal methods essential tools for industry, e.g., for certifying
software and hardware systems, also for non-safety-critical systems. Anticipating the testimonies from Rod
Chapman (Amazon Web Services) in Section 3.6 and Ivo ter Horst (ASML) in Section 3.8, respectively:

Chapman: łA key point is that AR [automated reasoning] builds trust with customers by allowing universal
and sound veriication of properties of our infrastructure and customers’ applications. By łuniversal,ž
AWS means properties that hold for all users, all storage buckets, all networks, all compute instances, all
conigurations, and so on Ð freeing the user from having to łtestž a nearly ininite state space.ž

ter Horst: łTo make ASML’s lithography systems run reliably and consistently ASML needs software that
sends unambiguous instructions in every situation to the carefully engineered hardware. Oneway that ASML
ensures this is by formally verifying (model checking) the speciied machine behaviour and automatically
generating correct and semantically equivalent code from those models.ž

Form. Asp. Comput.
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For this reason, experts continue to argue for the continuous integration of formal methods throughout the
complex industrial system development lifecycle, and for the formal methods education of system developers [138]
(cf. Section 3.1). In our experience, reported in this paper, which covers 50 years of work in industry as well as
in academia, most software projects lack the discipline seen in other branches of engineering. Few developers
approach their work with the understanding that mistakes will be made and that they should select and use the
methods and tools that were designed to prevent errors and to detect errors as early as possible after they are
made. Too few Computer Science graduates work in a way that shows that they understand their responsibility
to be able to provide evidence that their software meets their customer’s or end user’s requirements Ð and that
evidence from testing can never be strong enough on its own.
This does not mean that we are suggesting that formal methods exclude or are a replacement for testing

or simulation. As mentioned in the Introduction, these are complementary techniques for the central task of
veriication and validation (cf. [169] and, for a concrete example, Section 3.9: Formal Testing of Mobile Devices
from Natural Language Requirements). Our purpose is to emphasize the distinguishing feature of formal methods
in being capable of mathematically ensuring the absence of errors with respect to a given speciication.

2.2 Overview of Formal Methods and Tools

Formal methods ofer the means to both formally describe the artefacts delivered at each phase in the system
development lifecycle, and aid in their automated validation and veriication [7, 135]. Some tools prove useful
throughout the development methodology; others may specialize to address speciic phases and activities. As
mentioned in the beginning of this section, we focus on formal methods for the veriication phase. We refer
to [70] for a discussion on formal methods for all phases: identifying and formalizing requirements, modelling
and formal speciication, design and implementation, veriication and validation, and maintenance and evolution.
There are two core formal (veriication) methods from which all other formal (veriication) methods derive: model

checking [17, 88] and theorem proving [238, 266].
Theorem provers, such as Coq3 [51], Isabelle [241], Lean [233], Vampire [264], KeYmaera X [254, 255], LP [140],

PVS [248], Z3 [232], and others allow users to mechanically, and sometimes even automatically, prove generic
statements and theories about system artefacts formalized as mathematical theories. Theorem proving has found
its way in tool sets for state-based reinement approaches (as originally advocated by VDM [188], Z [282], and
subsequently B [2, 3]), such as Atelier B4 and Event-B5. A theorem prover’s independence of speciic problem
domains is one of its major strong points. Each theorem prover brings its own library of previous proofs upon
which it can draw to eiciently prove new theorems. Theorem provers difer in the contents of these libraries
and in their input logics. Typically users choose which theorem prover to use for a particular job by choosing the
input language that most intuitively describes the veriication question at hand and checking the proof library
for previous proofs useful in constructing the needed proof. While a theorem prover can complete some proofs
automatically after the user sets up the theorem correctly, others require substantial interaction from the user to
complete the proof, so utilizing previous results from the proof library and having a clearly-deined proof strategy
are essential. Theorem provers are very powerful tools that can reason about very large, or even ininite-state,
systems and complex mathematical algorithms.
Process-algebraic approaches such as ACP [15], CCS [228], CSP [171, 269], LOTOS [57], or LNT [137] have

inspired the development of model-checking toolsets such as CADP6 [136], CWB [91] / CWB-NC [93], FDR [143],
and mCRL2 [9, 75, 157] (cf. [92]). These and other model checkers, such as SPIN7 [172], NuSMV [86] / nuXmv [80],

3Coq received the 2013 ACM Software System Award.
4https://www.atelierb.eu/
5http://www.event-b.org/
6CADP received the ETAPS Test-of-Time Tool Award 2023.
7SPIN received the 2001 ACM Software System Award.
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UPPAAL8 [38, 39, 109, 110], ProB [211], and ABC [69], provide a convenient łpush-buttonž technique for auto-
matically assessing the consistency of an artefact (e.g., an algorithm or design described in a formal semantics)
by automatically verifying whether it satisies behavioural speciications typically expressed as assertions or
using some form of temporal logic. The industrial appeal of model checking includes the limited user interaction
required to achieve a complete, exhaustive veriication result. To efectively use a model checker, the user needs
only two inputs: the formal artefact or system description, and the logical speciication to check it against. The
user then pushes a button and receives either conirmation, e.g., in the form of a certiicate, that the system
artefact always upholds the speciication, or a counterexample proving that it does not. A counterexample is
a system trace stepping state-by-state through a valid execution of the system until a clear violation of the
speciication occurs. Counterexamples are therefore incredibly useful for debugging. Model checkers produce
results that are exhaustive: if there exists any system execution that violates the speciication, they will produce a
counterexample.
In this way, both theorem provers and model checkers efectively prove both the presence and the absence

of bugs. Moreover, both theorem provers and model checkers require guidance from a knowledgeable user to
structure and organize their speciications, and in the case of theorem provers, also their proofs. Model checkers,
on the other hand, have fully-automatic proofs but come with some limitations when compared to theorem
provers. Due to their exhaustive exploration of the state space, model checkers are sensitive to the shape and size
of the state space of the input system description and often do not allow elements like loating-point variables
or unbounded integers. Also, the presence of superluous information not relevant to the core algorithm under
veriication can dramatically slow down the model checker or cause it to time-out. Therefore the user must be
careful to describe only the relevant system logic in the input description to mitigate the state-space explosion
problem, where the number of states needed to model the system accurately may exceed the amount of available
computer memory. łDespite the development of several very efective methods to combat this problem [. . . ],
models of realistic systems may still be too large to it in memoryž [17, Section 1.2.2: Strengths and Weaknesses].
Similarly to choosing a theorem prover, users choose model checkers based on the eiciency of the input

modelling language at describing the veriication problem at hand. There are two types of model checkers, explicit
and symbolic, and some knowledge of which of these two types is best-suited to the problem is also helpful.
Explicit model checkers explicitly represent the systems’s behaviour space as a type of graph in memory and
the model checker systematically explores each state and veriies whether it satisies the given speciication.
Such an enumerative representation is suitable for systems with smaller state spaces, or state spaces with certain
types of repeated patterns. Instead of representing individual states or transitions, symbolic model checkers
represent sets of states and sets of transitions symbolically using data structures such as Boolean formulas or
Binary Decision Diagrams (BDDs). Symbolic model checking is particularly suitable for systems with a large,
or even ininite state space. Finally, for both theorem proving and model checking, the user must be careful
to specify the behaviour property correctly. Since many system requirements in natural language are vague,
incomplete, or confusing, this can be a very challenging task [271]. NASA’s Formal Requirements Elicitation
Tool (FRET)9 [142] for the elicitation, formalization and understanding of requirements may be of help. FRET
assigns unambiguous semantics to requirements written in a structured natural language and allows to export the
requirements into forms that can be used by a variety of analysis tools, among which Simulink Design Veriier
and SMV (cf., e.g., [123], where it is reported that the industrial partner found the FRET tool łvery easy to usež).
Next to these exhaustive qualitative veriication techniques, it is worth mentioning exhaustive quantitative

methods such as probabilistic (a.k.a. stochastic) model checking, and non-exhaustive methods such as runtime

8https://uppaal.org/
9https://software.nasa.gov/software/ARC-18066-1
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veriication, model-based testing and statistical model checking, and light-weight formal methods such as static
analysis.
Static analysis concerns the derivation of properties of interest from source code (or an intermediate repre-

sentation) without executing the code [265], meaning precision is the price to pay. Well-known static analysis
tools include Astrée10 [112], Coccinelle11 [204], Frama-C12 [194], and Lint [187] (cf. [116] for key lessons from
designing the static analyses tools Infer and Zoncolan and [210] for a comparison of the static analysis tools
Better Code Hub, CheckStyle, Coverity Scan, FindBugs, PMD, and SonarQube). Typically, one has to decide
between under- and overapproximations (e.g., abstract interpretation [103]), with the possibility of both false
positives and false negatives. Underapproximation13 is a consequence of an approach representing all possible
program behaviours in a way that includes some, but not necessarily all actual behaviour (thus giving rise to
false negatives, i.e., the analysis may fail to detect certain properties of the code), whereas an overapproximation
represents the set of all possible program behaviour in a way that includes all actual behaviour as well as possibly
some that are not possible (thus giving rise to false positives, i.e., the analysis may detect certain problems that do
not actually exist in the code). The choice between under- and overapproximation depends on the speciic goals
of the analysis and the trade-of between precision and completeness, where the challenge is to ind a suitable
abstraction that is both computationally feasible and provides meaningful insights into the program’s behaviour
while dealing with false positives and false negatives.

Model-based testing is a formal-methods approach to testing that complements formal veriication and model
checking and increases the eiciency and efectiveness of software testing [290]. It uses a formal or semi-formal
model to represent the desired behaviour of a system under test, which serves as the basis for generating test
cases and executing tests. It is typically more eicient than traditional testing approaches, since it automates
the test case generation process. Moreover, by systematically deriving test cases from the model, often a better
coverage of the system’s behaviour is achieved. Model-based testing complements other testing methodologies
and is part of the broader landscape of model-driven engineering [73].

Runtime veriication monitors and analyzes actual software (and hardware) system behaviour while the system
is running [27, 94]. It ofers improved practical applicability and scalability compared to exhaustive formal
veriication, such as model checking and theorem proving, by analyzing only oneÐor a fewÐexecution traces of
the actual system. Runtime monitoring derives from model checking, except that in model checking the running
system is the input system description, so instead of an exhaustive analysis of all possible system runs (like model
checking), runtime monitoring analyses only the łcurrentž system run against the input logical speciication (cf.
[272] for a disambiguation from simulation).
Compared to model checking, which focuses on absolute guarantees of correctness, probabilistic or sto-

chastic model checking focus on modelling and analyzing systems that exhibit probabilistic or stochastic be-
haviour [16, 17, 198, 200, 263]. Such aspects are essential in cases of unreliable or unpredictable system behaviour
and performance evaluation. Instead of providing a yes/no answer to the question as to whether a system
model (�) satisies a temporal logic property (�), the answers are of the form łwith a likelihood of 99%,� will
satisfy � ,ž where � is expressed in a stochastic or probabilistic temporal logic. Statistical model checking [5, 208]
uses a simulation- and sample-based approach to reason about precise properties speciied in a stochastic temporal
logic, ofering a scalability advantage over exhaustive (or probabilistic) model checking due to the fact that
there is no need to analyze entire state spaces. Moreover, even though the outputs of sample-based methods

10https://www.astree.ens.fr/
11https://coccinelle.gitlabpages.inria.fr/website/
12https://frama-c.com/
13Not to be confused with underapproximate triples in incorrectness logic [245], a logical underapproximate theory for proving the presence

of problems.
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are not always correct, statistical inference enables quantifying the conidence in the obtained result14, thus
compensating for the lack of exact results (100% conidence).

3 Formal Methods in Industry

In this section, we present a broad scope of applications of formal methods in industry, not limited to the safety-
critical domain, including testimonies contributed by Rod Chapman from Amazon Web Services, leader in cloud
computing (cf. Section 3.6), and Ivo ter Horst from ASML, leader in the semiconductor industry (cf. Section 3.8).
The reported applications of formal methods in industry range from experiments with formal methods in industry
to routine applications of formal methods in industry as part of the development process. After a summary
of recent literature on successful applications of formal methods in Section 3.1, we describe a selection of
success stories for applying formal methods in the safety-critical domains of railways, automotive, and aerospace
in Sections 3.2ś3.4. Subsequently, we report testimonies of success stories in the non-safety-critical domains
of operating systems in Section 3.5, e-commerce in Section 3.6, hardware design in Section 3.7, lithography
manufacturing in Section 3.8, and mobile devices in Section 3.9.

3.1 Summary of Recent Literature

Success stories of the application of formal methods in industry traditionally focus on their application to safety-
critical systems, such as transport, nuclear power plants, and medical devices. Arguably one of the most cited ones
concerns the fatal accidents with the infamous Therac-25 software-controlled radiation therapy machine that
were, among others, due to software coding errors. As demonstrated in [213, 214, 288, 289] (using, among others,
the process algebra LOTOS [57] and the theorem prover LP [140]) these software errors could have been avoided
if łbasic software engineering principlesž and łsophisticated modeling and analysis toolsž had been applied. Alas,
what Nancy Leveson wrote in 1993, łsoftware should be subjected to extensive testing and formal analysisž [214],
and in 2017, łit’s time for computer science practitioners to be better educated about engineering for safety.ž [213],
is still true. Transport applications include, but are not limited to, the railway [33, 77, 207] and aerospace [234, 281]
domains. We refer to, e.g., [32, 36, 128, 145, 174, 299] for more complete overviews of such applications. A recent
survey among 216 participants studying the use of formal methods for mission-critical software indicates łan
increased intent to apply FMs in industry, suggesting a positively perceived usefulnessž [144].
Outside safety-critical applications, the literature also reports a recent uptake in the application of formal

methods [82]. Formal methods have, for example, been applied to ensure the quality of cloud services at Ama-
zon [12, 239], cloud databases at Huawei [134], and mobile apps at Facebook [116]. Sadowski et al. [277] describe
how formal methods are integrated in the software development worklow at Google. Godefroid reviews con-
colic testing and various forms of fuzzing, which are capable of scaling to Microsoft applications (e.g., Excel
or PowerPoint) with millions of lines of code [146]. Concrete symbolic (concolic) testing is a hybrid software
veriication technique that performs symbolic execution along concrete execution paths in an attempt to system-
atically explore the execution of a program, focusing on both speciic input values (as for traditional testing) and
symbolic representations of various alternative program paths, to achieve improved path coverage compared
to traditional testing. Scalability is a challenge due to the path explosion problem, i.e., the number of possible
paths grows signiicantly as the program’s complexity increases [280]. Fuzzing is a more light-weight testing
technique focused on quickly exploring a large input space by providing random or semi-random inputs, typically
generated by mutation-based or generation-based fuzzing, to a program to discover vulnerabilities or unexpected

14The level of conidence is usually stated as a percentage 100 × (1 − � )%, meaning that 100 × (1 − � )% of the time the actual expected value

belongs to the conidence interval [� − �/2, � + �/2], where � is the estimated value, � is the conidence, and � is the width of the conidence

interval, which is typically determined based on � and a large enough �, the number of samples obtained from � independent simulations.
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behaviour [286]. Formal methods have also been used successfully to show the incorrectness of widely used soft-
ware such as Timsort [154], the Java LinkedList implementation [168], and implementations of the MCS mutual
exclusion locks [225] in open-source weak memory models and at Huawei [244], as well as the correctness of the
seL4 operating-system kernel [192, 193] and the CompCert C compiler [26, 55, 183]15. In the same realm, modern
programming language features such as Rust’s memory safety and Go’s concurrency have a solid foundation in
formal methods (cf., e.g., [104, 189]). Finally, formal methods have also been applied in other domains, like in
medical imaging for model checking the segmentation of glioblastoma and nevi [22, 41, 42].
A recent survey among 130 experts in formal methods (including 3 Turing Award winners16, all 4 FME

Fellowship Award winners17 and 16 CAV Award winners18) investigated the factors that limit the uptake of
formal methods in industry practice. In this survey, 71.5% of the respondents identiies that łengineers lack proper
training in formal methodsž as a limiting factor for a wider adoption of formal methods by industry [138, Section 5:
Formal Methods in Industry]. Other key limiting factors are that łacademic tools have limitations and are not
professionally maintainedž (66.9%), formal methods łare not properly integrated in the industrial design life cyclež
(66.9%) and łhave a steep learning curvež (63.8%). Related to this, 62.3% indicates that łdevelopers are reluctant to
change their way of working.ž Another survey [138] concludes that łthe current situation [of formal methods
education] is very heterogeneous across universities, and many experts call for a standardisation of university
curricula with respect to formal methods.ž
In the following sections, we describe a selection of success stories of applying formal methods in both

safety-critical (cf. Sections 3.2ś3.4) and non-safety-critical domains (cf. Sections 3.5ś3.9). Moreover, we relate the
formal methods and tools mentioned in Sections 3.2ś3.9 to the comprehensive classiications and explanations
in Section 2. We acknowledge the need for performing more empirical studies on formal methods according
to well-established guidelines [35] to establish at what point formal methods are being applied, which are the
most frequently applied techniques and tools, and related questions. From two recent surveys from the literature
involving, respectively, 216 professionals from Europe and North America using formal methods in dependable
systems engineering [144] and 328 papers on formal methods in railways [128], we know that (i) the professionals
employ formal methods mainly for assurance (e.g., proof, error removal), speciication (i.e., formal description
techniques), and inspection (e.g., error detection, bug inding), while in most of the papers formal methods are
applied in the Architecture (66%) and Detailed Design (45%) development phases; (ii) the professionals mainly
use formal methods analysis techniques for assertion checking, followed by consistency checking and model
checking, while in the papers formal veriication is the dominant analysis technique (67%), in particular model
checking (47%) and theorem proving (19.5%), whereas static analysis is hardly used (1%); (iii) the professionals
were not asked for their experiences with formal methods tools as it was left for future work łto ind out which
particular FM (and tool) is used in which domain for which particular purpose and role,ž while in the papers the
tool landscape is rather scattered with ProB (9%), NuSMV (8%), and UPPAAL (7%) among the most frequently
used ones, but not much more than Atelier B (5%), Event-B/Rodin (4%), SPIN (4%), and Simulink (4%).

3.2 Formal Methods for Railways

Railway signalling used to be done manually by observing trains and operating signals, which is error-prone and
restricts the capacity of railway transportation. Automatic signalling is obviously needed for modern railway

15The seL4 developers received the 2022 ACM Software System Award for łthe irst industrial-strength, high-performance operating system to

have been the subject of a complete, mechanically-checked proof of full functional correctness;ž the 2021 ACM Software System Award went

to łCompCert, the irst practically useful optimizing compiler targeting multiple commercial architectures that has a complete, mechanically

checked proof of its correctness.ž
16https://amturing.acm.org/byyear.cfm
17https://www.fmeurope.org/awards/
18http://i-cav.org/cav-award/
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control systems. However, the safety of such automatic systems is crucial as a small error in signalling may
have catastrophic consequences, such as train collisions. Moreover, replacing manual railway signalling with
an automatic solution means huge investments and the extremely high standards of safety make it even more
expensive. Formal methods can be a solution both for ensuring the safety of such systems and saving costs [40,
Section 3: Cost-Beneit Analysis]. CENELEC EN 50128 is a European standard for the development of software
for use in the railway industry [122]. It highly recommends formal methods for the design and veriication of
products that need to meet the highest safety integrity levels (SIL 3 or SIL 4, i.e., with a maximum accepted
probability of dangerous failure between 10−7 and 10−9 per hour). The above mentioned cost-beneit analysis
reported, which follows EU guidelines and covers both inancial and economic analysis, is the only such analysis
applied to formal methods that we are aware of. We agree with the authors of [40] who call for łgreater attention
of the formal methods community to the quantiication of costs and beneits parameters [. . . ] since the evidence of
the beneicial efects of formal methods is mostly given instead in the literature in a qualitative way.ž In [247], the
authors evaluated (without any monetary measurements) the efect of applying the commercial formal technique
Analytical Software Design (ASD) to an industrial project, and they compared the positive results concerning
code quality (good) and productivity (high) with those of 13 similar projects that used other formal methods
(e.g., B and VDM). The above mentioned recent survey among 130 experts in formal methods also contained a
question that asked the experts to make an informal cost-beneit analysis over time [138, Section 5.3: Return
on Investment]. A small majority of 58.5% of the respondents answered that the application of formal methods
is proitable in medium and long terms; 15% answered that they are immediately proitable and 12.3% that they
are proitable in the long term only, while 2.3% answered that there is no return on investment and 11.5% had no

opinion.
From the above mentioned recent survey of the landscape of research on applications of formal methods to

the development of railway systems [128], involving 328 high-quality papers from 1989ś202019, we know that
formal methods in railways is a thriving research ield with strong industrial ties, since 143 papers were published
solely in the last ive years (44% of the total of 328 papers) and 79 papers (24%) involved industry. Well-known
success stories throughout the years concern the development and veriication of the Automatic Train Protection
(ATP) system for the RER Line A of Paris [159], the Subway Speed Control System (SSCS) of the subway of
Calcutta [108], Line 14 of the Paris Metro [117], and derivatives thereof, like line 1 or the NY Canarsie line [121],
and the driverless ParisśRoissy Airport shuttle [37], all developed with the B method. B was also used for an
industrial scale system-level analysis of Alstom’s U400 system [95], which is in operation in about 100 metro
lines worldwide. Another success story concerns the metro control system of Rio de Janeiro, developed with the
support of Simulink/Statelow [125]. Simulink20 is a model-based development tool for graphical system design,
supporting simulation, test generation and code generation. A Simulink model’s basic unit is a block diagram
such that each block represents a diferent system component and their connections represent interactions
between these components. Simulink comes with Statelow, a graphical language inspired by Harel’s hierarchical
statecharts [166], for modelling and simulating the behaviour of complex systems in the form of state machines
and low charts, and it supports model checking through Simulink Design Veriier, which is part of the Simulink
Veriication and Validation tools. Further success stories concern the veriication of the ERTMS/ETCS European
standard for railway control and management with NuSMV [85] and of Hybrid ERTMS/ETCS Level 3 with a
variety of formal methods and tools [30, 76]. In particular, in [164], the new system was modelled in B, identifying

19The survey was conducted following the guidelines for systematic mapping studies [252]. In particular, the 328 high-quality papers were

selected from an initial set of 4346 papers retrieved from scientiic databases upon the application of predeined criteria for inclusion (e.g., the

study is written in English language) and exclusion (e.g., the study does not use a formal or semi-formal method) plus a quality checklist (e.g.,

is there a clear description of the task addressed with formal methods?) used for grading the papers. All papers with an insuicient overall

quality score were excluded from the selection.
20https://nl.mathworks.com/products/simulink.html
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over 30 issues and using the formal model as a runtime artefact for a real-life demonstration. Moreover, in [6],
the system structure of the movement authority scenario of the Chinese Train Control System Level 3 (CTCS-3)
was modelled by core constructs of the Architectural Analysis and Design Language (AADL) [111, 278], with its
extensions Behavior Language for Embedded Systems with Software (BLESS) [203] for the discrete behaviour and
Hybrid CSP [184] for the continuous behaviour, and veriied with the Hybrid Hoare Logic (HHL) Prover [295],
an interactive theorem prover based on Isabelle/HOL. Recently, the Autonomous Positioning System (APS) of
the Florence tramways was veriied with the support of the model checker UPPAAL [28]. See [126, 127, 223] for
comparisons of diferent formal methods and tools for railway system design.
Railway transportation, such as trains, metros, and trams, is one of the most environmentally friendly and

energy-eicient means of transportation. In the domain of railway control systems, a large number of research
projects that involve formal methods have been carried out during the past decades, such as RobustRail21 and
more than one hundred projects funded under the Shift2Rail initiative22, including the X2Rail series. Shift2Rail
and its successor Europe’s Rail are joint eforts of railway stakeholders and the EU to advance the railway
domain through innovative research projects involving both academia and industry, in which formal methods
are considered to be fundamental to the provision of safe and reliable technological advances in railways [33].
Notable initiatives outside the EU are the UK Rail Research and Innovation Network (UKRRIN)23 and the Chinese
State Key Laboratory of Rail Traic Control and Safety24.

Companies such as Alstom and Siemens are using formal methods, such as the B language, in the development
of their train control systems as well as for data validation [206, 212], notably using the model checker ProB within
tools like Systerel’s OVADO25 [1, 13] and the ClearSy Data Solver26, both of which are certiied T2 (i.e., tools where
a fault could lead to an error in the results of veriication or validation) for SIL 4 in accordance to the CENELEC
EN 50128 standard. Prover is another industrial leader in formal methods for railway signalling automation. They
develop software tools and services to support railway signalling design automation. Their solution covers a
formal high-level language for formal veriication and tools for developing, testing, and verifying railway control
systems, like railway interlocking systems. They apply formal veriication techniques, like theorem proving,
in their interlocking software, digital twins, and development tools for railway signalling, which have been
used in projects worldwide, like Sweden, Norway, China, France, and Canada 27. The Prover Certiier formal
veriication tool, which includes the Prover PSL model checker, is also certiied T2 for SIL 4 in accordance to
the CENELEC EN 50128 standard. Moreover, the successful application of formal methods in Prover shows that
formal veriication can cut on-site testing time by up-to 50% and detect bugs that are overlooked by traditional
testing28: łFormal Veriication providesmuch higher coverage than testing. At Prover, we always ind errors
when doing formal veriication, even on systems that have gone through regular veriicationž29

In the near future, the Railway domain is expected to contribute signiicantly to the European Green Deal by
improved digitalization and data analytics30. Challenges include the extension of formal methods and tools to
cope with AI-based systems, such as equipping veriication tools with certiicate generation, and their integration
in the CENELEC standards [279].

21http://www.robustrails.man.dtu.dk
22https://projects.shift2rail.org
23https://www.ukrrin.org.uk/
24http://en.bjtu.edu.cn/research/institute/laboratory/16583.htm
25https://www.ovado.net/
26https://www.clearsy.com/en/tools/data-solver/
27https://www.prover.com
28https://www.prover.com/categories/veriication-validation
29Daniel Fredholm from Prover Technology in his presentation Formal Veriication in the Railway Domain during FME’s łInFM: Industry talks

on Formal Methodsž series on May 16, 2024.
30https://transport.ec.europa.eu/system/iles/2021-04/2021-mobility-strategy-and-action-plan.pdf
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3.3 Formal Methods for Automotive

ISO 26262 is an international standard for functional safety in the automotive industry [179]. It provides guidelines
and requirements for the development of safety-critical electrical and electronic systems (E/E systems) in vehicles.
The standard is focused on ensuring the safety of E/E systems that are involved in the operation of passenger cars,
motorcycles, trucks, and buses. The standard deines a safety life-cycle that encompasses various phases, including
requirements, system, hardware, and software development. It emphasizes the identiication and assessment of
potential hazards, as well as the implementation of safety measures to mitigate risks. ISO 26262 also outlines
processes for safety management, hazard analysis, risk assessment, and veriication and validation of functional
safety, deined as the absence of unreasonable risk due to hazards caused by malfunctioning behaviour of E/E
systems31.
Compliance with ISO 26262 is typically required by regulatory bodies and is expected by customers in the

automotive industry. Adhering to the standard helps ensure that vehicles and their associated systems are
designed, developed, and produced with a focus on safety, reducing the likelihood of failures or malfunctions that
could lead to accidents or injuries. Formal methods are considered the best choice in order to handle complexity
and improve conidence in the automotive system’s correctness, and although not mandated by ISO 26262, they
are clearly encouraged and actually used, as demonstrated in the next paragraphs.

The need for advanced formal methodologies for design, development, and veriication of automotive systems
was identiied by both industry and academia. Several projects were launched, and many problems were addressed.
The systems modelling language (SysML) [180] is a general-purpose modelling language for systems engineering
applications deined as an extension to UML addressing the structuring of requirements and their veriication.
Within several EU research projects, the Architecture Description Language, a metamodel and an ontology for
representing engineering information for automotive embedded systems, called EAST-ADL32 [56], was developed.
EAST-ADL went further and applied an automotive ontology and representation aligned with AUTOSAR for the
structuring of engineering information. The EAST-ADL model is structured in abstraction levels, where each
sub-model represents the complete embedded system, at the relevant level of detail. The EAST-ADL abstraction
levels map to the abstraction levels given in ISO 26262. EU projects like ATESST, CESAR, SafeCer, MAENAD,
and MBAT all addressed the use of models and tools to automate the representation and formal veriication of
automotive systems’ requirements.
Volvo Group Trucks Technology (VGTT) in Sweden is a division of Volvo Trucks that is a world-leading

truck manufacturer, providing total transport solutions. In its Model-based Continuous Integration of Automotive

Embedded Systems [215], VGTT applies the following engineering principles in order to address their product
development and process challenges: (i) Go Virtual, to allow daily deliveries and maximize veriication conidence
while exercising dangerous and rare events, (ii) Go Rigorous, which requires the use of models, data, and formal
veriication to provide means to secure products versus needs and requirements, and allow engineering rigour
and automation, (iii) Go Multi-Method, which incorporates in the engineering worklow a multitude of tools for
the model representation (EAST-ADL, Simulink, the object-oriented, declarative modelling language Modelica33,
its Association Project Function Mockup Interface34, and the model checker UPPAAL), as well as software-centric
and physics-centric simulation (e.g., EAST-ADL/Simulink and Function Mockup Units) and formal veriication of
components’ behaviour and timing (e.g., by employing the model-checking toolset UPPAAL), (iv) Go Consistent,
to ensure that binaries and components are faithful realizations of models and code, and (v) Go Continuous to
deliver daily/weekly/monthly component versions and tests. All these methods and tools for modelling and

31https://www.iso.org/obp/ui/en/#iso:std:iso:26262:-1:ed-2:v1:en
32https://www.east-adl.info/
33https://modelica.org/
34https://fmi-standard.org/
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veriication have been integrated or are under integration in VGTT’s ADAPT Integration Environment, leading to
development eiciency via iterative and incremental development, and assured product quality by incorporating
formal techniques, such as SAT-based requirements consistency-checking with the Z3 theorem prover [216, 217]
and model checking with the UPPAAL model checker [131, 158, 218], in the engineering worklow.
The recent rise of autonomous vehicles has brought exciting new challenges to the automotive industry to

make such vehicles safe, reliable, and trustworthy, respect legal regulations, and ready for societal acceptance.
These include dealing with uncertainties and incomplete or inaccurate information, as well as the development of
efective formal methods and tools for the veriication of AI-based systems based on transparent and explainable
components that can be certiied [219].

3.4 Formal Methods for Aerospace

Formal methods are now an expected and required part of the development processes of intelligent, autonomous,
and safety-critical air and space systems. Their use is codiied into light certiication, e.g., by the US Federal
Aviation Administration (FAA) via DO-178B [257], DO-178C [260], DO-333 [259], and DO-254 [258], and in the
EU by Regulation (EU) 2018/1139.35 International standards agencies IEEE and IEC (International Electrotechnical
Commission) maintain tens of standards for avionics involving formal methods [177, 178]. See [132] for a more
detailed discussion of regulations for formal methods in certiication of reliable autonomous systems, which
include Unmanned Aerial Systems (UAS), covering airborne vehicles ranging from toy quadcopters to military
UAS and autonomous missiles, but also driverless trains and self-driving cars.

Systems whose requirements, design, veriication, and maintenance were shaped by formal methods continue
to further the frontiers of modern aerospace engineering. For example, explicit-state model checking with
model checkers like SPIN and the software model checker Java PathFinder [292] increased the robustness of the
Small Aircraft Transportation System (SATS) [236]; proved the absence of synchronization faults in the Tactical
Separation Assurance Flight Environment (TSAFE) [52]; veriied a design-time hierarchical, concurrent spacecraft
model [224]; and analyzed the Mars Science Laboratory’s light software [156, 173]. Symbolic model checking of
temporal logic formulas [270] with model checkers like (Nu)SMV / nuXmv veriied the Traic Alert and Collision
Avoidance System (TCAS) lying on-board commercial aircraft [83]; ensured internal aircraft modes followed the
A-7E aircraft software requirements [283]; provided the basis for the Correctness, Modelling and Performability
of Aerospace Systems (COMPASS) [67]; robustiied Boeing’s AIR6110 wheel braking system [68]; and changed
NASA’s design for the NextGen automated air traic control system [139, 222, 302]. Such successes convinced
the engineers at Dassault Aviation of the feasibility of verifying Esterel programs [49], which they use for parts
of the safety-critical software of light control systems but also for mission management systems. Theorem
proving with theorem provers like KeYmaera and PVS provided many core veriication results, e.g., for full-scale,
real-life air traic control systems including KB3D pair-wise conlict detection and resolution algorithms [235],
Stratway (a modular approach to strategic conlict resolution) [160], ACCoRD (state-based conlict detection and
resolution algorithms) [237], Chorus (tactical conlict and loss of separation detection and resolution) [78], and
ACAS-X (Airborne Collision Avoidance System X) [182]. The theorem prover Isabelle/HOL [300] provided proofs
for partition scheduling of a commercial real-time operating system implemented following the ARINC 653
international aerospace industry standard [4].

35Regulation (EU) 2018/1139 of the European Parliament and of the Council of 4 July 2018 on common rules in the ield of civil aviation

and establishing a European Union Aviation Safety Agency, and amending Regulations (EC) No 2111/2005, (EC) No 1008/2008, (EU) No

996/2010, (EU) No 376/2014 and Directives 2014/30/EU and 2014/53/EU of the European Parliament and of the Council, and repealing

Regulations (EC) No 552/2004 and (EC) No 216/2008 of the European Parliament and of the Council and Council Regulation (EEC) No 3922/91:

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1139
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Next to these exhaustive qualitative veriication techniques, the exhaustive quantitative method of probabilistic
model checking, in particular the probabilistic model checker PRISM36 [199], proved instrumental in increasing
the robustness of ACAS-X [294]; carrying out comparative analysis of automated air traic control systems [303];
assessing the reliability, availability, and maintainability of a satellite [250]; and analyzing NASA’s SPIDER
distributed, fault-tolerant operating system [120]. We conclude with non-exhaustive formal methods. Static
analysis made possible the veriication of a large, complex software system that provides separation assurance
between multiple airplanes up to 20 minutes ahead of time [141]. Dynamic analysis, a scalable alternative to
static analysis for models with nonlinear dynamics, enabled rigorous safety-checking of the nonlinear predicates
that arise from dynamics-based predictions used in alerting logic for a state-of-the-art parallel aircraft landing
protocol [119]. Three runtime veriication engines have been designed speciically for aerospace use-cases: NASA
Langley’s Copilot [251, 253], DLR’s RTLola [31], and R2U2 [185, 273].

Advances in the scalability, adaptability, and connectivity of all of these tools and techniques have created an
ecosystem advancing the system lifecycle of robust aerospace systems through their combined use. For example,
NASA’s Lunar Gateway is currently being designed from formal requirements authored as assume-guarantee
contracts, veriied at design time and carried through the system lifecycle all the way to on-board, real-time
runtime veriication [106, 107, 186].

3.5 Formal Methods for Operating Systems

From the beginning, formal methods have been inspired by the problems arising from multi-user operating
systems, especially parallel programming and communication protocols, for which speciication languages and
automated protocol validation techniques based on state-space exploration have been developed since the 1970s,
e.g., [274, 296]. The application ield of formal methods further expanded to also encompass the veriication
of distributed algorithms, such as the atomic multicast protocol used for the DELTA-4 distributed dependable
architecture [23].

There have been many success stories of formal methods in this area. One can mention the formal veriication
of the seL4 general-purpose commercial microkernel using the Isabelle/HOL theorem prover [192, 193], the
SLAM veriication platform based on static analysis and symbolic model checking for analyzing the source code
of Microsoft Windows drivers [18ś21], Microsoft’s SAGE whitebox fuzzer, which found roughly one third of all
the bugs discovered by ile fuzzing during the development of Windows 7 [147ś150], and the Coccinelle static
analysis tool for automatically updating the Linux kernel and drivers [204, 205, 267].

3.6 Formal Methods for Cloud Security and e-Commerce

Amazon Web Services (AWS) has developed and deployed formal and automated reasoning technology for more
than a decade. AWS leadership have recently described a łGolden Agež [275] for automated reasoning (AR), with
AR Group founder Byron Cook noting:

łFormal methods is transforming how Amazon Web Services (AWS) secures the cloud. Security has
historically been a manual, high-judgement and thus un-scalable ield; automated formal reasoning
is challenging that entire structure, changing both the quality of AWS products and the cost structure
to support them. The key at AWS has been to avoid łshiny-object syndromež [99] and instead build
and apply tools that quietly but reliably change the behaviour of engineers. Many leaders at AWS
were skeptical of this type of work in 2016, but the success in areas such as cryptography, identity,
storage and virtualization has changed minds.ž

A key point is that AR builds trust with customers by allowing universal and sound veriication of properties
of AWS’ infrastructure and customers’ applications. By łuniversal,ž AWS means properties that hold for all users,

36PRISM received the ETAPS Test-of-Time Tool Award 2024.
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all storage buckets, all networks, all compute instances, all conigurations, and so on Ð freeing the user from
having to łtestž a nearly ininite state space.

The deployment of AR within AWS covers a broad spectrum Ð from deep proofs of foundational code, through
properties of protocols and internal services, to universal properties of customer-facing applications at enormous
scale. A small selection of examples includes:

(1) At the foundational level, AWS has proven the memory- and type-safety of the irst-stage boot code of its
servers [98], giving them conidence that the code is crash-proof and resistant to code injection attacks for
all possible conigurations. The authors used the C Bounded Model Checker (CBMC) [89], but mention
that łany other bit-precise, sound, automated static analysis tool could be used.ž More recently, AWS has
produced a library, called łs2n-bignum,ž that provides primitive operations for elliptic curve ield elements
and points [163]. These operations underpin billions of cryptographic operations per day. s2n-bignum is the
irst cryptographic library that combines formal proofs of functional correctness for multiple variants of the
ARM64 and x86_64 micro-architectures, resistance to timing-based side-channel attacks, and performance
that is equal to or exceeds all other contemporary implementations. The s2n-bignum code [167] and proofs
are freely available under a permissive licence.

(2) The AWS authorization system evaluates each request to AWS against relevant access control policies to
determine if access is allowed or denied. An internal service called Zelkova [11] takes in a set of policies
and uses automated reasoning to analyze every possible request that would be allowed by those policies.
Under the hood, Zelkova translates each policy into a set of SMT constraints that are passed to a łportfoliož
of solvers, such as the theorem provers Z3, CVC4 [25] and CVC5 [24] for solving Satisiability Modulo
Theories (SMT) in a łwinner-takes-allž race. In 2019, AWS extended Zelkova to introduce łIAM Access
Analyzer,ž which removes the burden of requiring the user to write formal access control speciications.
Instead, the tool presents the user with a set of łindingsž that the user can review and mark as łintendedž
or łnot intended.ž This interaction is actually a form of formal speciication reinement, although the user
does not have to interact with the underlying formal model. By late 2022, Zelkova and its customer-facing
services were generating over 1 Billion SMT queries per day [275]37.

(3) In late 2020, AWS announced the availability of strong read-after-write consistency in the S3 storage service.
S3 operates at a currently preposterous scale, storing over 100 Trillion objects and handling over 10 Million
requests per second [293]. Strong consistency ensures that the same view of an object is available to all
readers instantly following a write operation to that object. Consistency properties were speciied and
veriied using Dafny [209], a veriication-aware programming language which uses the Z3 automated
theorem prover for discharging proof obligations. To deal with continued evolution of the system, formal
veriication activities are built into the development team’s continuous integration pipeline and run before
traditional testing [97].

3.7 Formal Methods for Hardware Design

In the design of modern circuits (e.g., processors, co-processors, systems on chip), the largest part of the efort is
dedicated to testing (which is usually called łveriicationž in this hardware domain) and łformal veriicationž
(which implies the use of formal methods). A fair estimation is that more than 50% of the efort is dedicated
to veriication (formal or not) [72, 262], which is much higher than what is typically observed in the software
industry.
The main diference between hardware and software is the impossibility to apply late patches to circuits, as

usually done to ix bugs and design mistakes in software systems (such as the famous łpatch Tuesdayž [74]).
Some degree of patching is possible for processors, e.g., by releasing updates for the irmware, or by embedding

37https://www.amazon.science/blog/a-billion-smt-queries-a-day
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slow yet reliable fall-back algorithms, to be used as replacements for modern, highly optimized algorithms if
these happen to be wrong or cause run-time errors. Yet, in most cases, patching circuits after they are shipped is
nearly impossible (if these circuits are embedded in larger systems) and very expensive. For instance, the design
error in the Intel Sandy Bridge chipset cost an estimated US$ 700 million [176].

Formal veriication led tomany success stories in the hardware-design industry, e.g., for checking the correctness
of implementations of instruction sets, for checking the many communication protocols and distributed algorithms
(as modern circuits heavily rely on concurrency), for checking that code generation produces correct results (this
is known as łequivalence checkingž), for checking that asynchronous logic performs well, etc.

Theorem proving is instrumental in the design of correct circuits. For instance, the ACL2 theorem prover38 [190,
191] has been used by companies such as AMD, Arm, Centaur Technology, IBM, Intel, Oracle, and Collins
Aerospace. For example, it gave a formal proof that the security policy of the Rockwell Collins AAMP7 micro-
processor enforces a static separation kernel and is thus able to concurrently process information ranging from
unclassiied to top secret [155, 165].

Model checking also plays an important role in hardware veriication. For instance, theMur� model checker [115,
285] and its many derivatives have been helpful for checking cache-coherence and security protocols. Also, the
CADP model-checking toolbox [136] has been used by hardware companies such as Bull, CEA/Leti, STMicroelec-
tronics, and Tiempo in numerous case studies (cf., e.g., [60, 101, 196, 202, 221, 301]).

CAD tool vendors (e.g., Cadence and Synopsis) provide tools that, to a certain extent, embody formal methods
under the hood. High-level languages such as VHDL or SystemVerilog are used to describe the components, while
languages based on temporal logic, such as SVA or PSL, are used to describe the expected properties. Further
dissemination of formal methods in the hardware industry is currently limited by the insuicient number of
experts, an issue that is addressed in various ways: in-house training by experienced engineers, tutorials given
by CAD tool vendors, andÐmore recentlyÐspeciic training delivered by small, dedicated service companies39.
In [81], the speciic shortage of veriication engineers in the hardware design domain of microelectronics is
addressed, emphasizing the importance of teaching the łveriication mindset,ž accelerating the learning curve for
veriication techniques, and incorporating new paradigms like AI into the veriication process.

3.8 Formal Methods for Lithography Manufacturing

ASML40 is one of the world’s leading manufacturers of chip-making equipment, such as lithography machines
which drive Moore’s Law [229] forward. Lithography machines are complex cyber-physical systems which use
light to print tiny patterns on silicon; a fundamental step in mass producing microchips.
ASML’s lithography machines aim to print microchip patterns as accurately and consistently as possible,

even in high-volume manufacturing environments. Reliable chip manufacturing requires extremely tailored
processes for each customer, so any unexpected change Ð even an improvement Ð comes at a cost. To make
ASML’s lithography systems run reliably and consistently ASML needs software that sends unambiguous
instructions in every situation to the carefully engineered hardware. One way that ASML ensures this is by
formally verifying (model checking) the speciied machine behaviour and automatically generating correct and
semantically equivalent code from those models [54].
To this aim, ASML uses the Coco platform 41, which integrates the imperative programming language Coco,

designed for (a)synchronous event-driven software systems based on state machines, with the model checker
Cosmos, designed to formally verify Coco programs (e.g., absence of deadlocks, livelocks, and race conditions,

38The BoyerśMoore theorem prover, a precursor to ACL2, received the 2005 ACM Software System Award.
39Cf., e.g., https://aedvices.com
40https://asml.com
41https://cocotec.io/
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responsiveness, etc.), and is capable of generating executable code. Cosmos uses a customized process model
with respect to the FDR reinement model checker for CSP that can be resolved without state-space explosion.

ASML applies this development methodology to systems ranging from high-level supervisory machine control
components to low-level drivers, by expressing behaviour in many asynchronously communicating (via formally
deined interfaces) state machines. Some of these state machines have billions of states (relecting the complexity
of the machine’s behaviour), but even in much smaller ones there are inherent risks of issues like deadlocks
and race conditions. ASML’s experience is that humans have diiculty overseeing all parallel behaviour of even
the smaller state machines. This is a potential risk to consistent machine operation and might even result in
downtime. Formal veriication helps ASML engineers to uncover many of these notoriously hard-to-ind issues
in an early development phase and has therefore become a critical and cost-efective design aid for ASML.
Formally verifying all desired (e.g., end-to-end) properties is currently infeasible due to various reasons,

including the size and complexity of ASML’s systems. Therefore, ASML incorporates runtime veriication
techniques in the testing process, which focus on aspects not already covered by formal veriication.
The more code that is generated from formally veriied models, the less chance of customers encountering

bugs in ASML’s software. Although that rarely happens, ASML wants it to never happen. By formally verifying
more behaviour and more properties, ASML can get even closer to that goal.

3.9 Formal Testing of Mobile Devices from Natural Language Requirements and Other Stories from

Brazil

Motorola Mobility, a Lenovo Company, has a partnership of over two decades with the Federal University of
Pernambuco, in Brazil, to conceive a sound, automated, and industrial-scale testing strategy that can be applied
in the mobile device domain. In the period from November 2022 to November 2023, Motorola was ranked second
in the mobile vendor market share in Brazil42 and eighth worldwide43. This is clearly not a safety-critical domain
but rather a mission-critical domain, in the sense that escaped defects can severely afect the reputation of
the company and cause signiicant inancial losses. The overall strategy was implemented in a tool named
TaRGeT [129]. It has been used by some Motorola teams that reported gains between 40% and 50% in productivity
related to the overall testing process [130, 242]. Prior to this cooperation, testing was mainly a manual task in
Motorola. Currently, Motorola instead adopts a formal, model-based, testing approach based on hidden formal

methods.
The input to the developed testing strategy [243] is a text document written in a Controlled Natural Language

(CNL), suitable for writing requirements, use cases and test cases, but with formal syntax and semantics. Beneitting
from natural language processing techniques, a formal model (in CSP [171, 269]) is automatically derived from
these requirements. Using the CSP model checker FDR [143], test cases are automatically generated as CSP traces
and then translated back into CNL (for manual execution) or into scripts for several automation frameworks,
for automated execution. The deined formal conformance relation is cspio, a CSP-based conformance relation
distinguishing input and output based on the input/output conformance (ioco) implementation relation for
input/output labelled transition systems (IOLTS) [53], formalized in the traces model of CSP. The reason for
adopting an ioco-based relation is that ioco captures both partial speciications (important in the context of
testing mobile devices, as the testing is on a feature-by-feature basis) and allows reduction of nondeterminism,
also useful for allowing implementation choices. Many variants of ioco have been proposed in the literature
(e.g., uioco, mioco, wioco, and sioco) to deal with under-speciication, time, data, and so on. However, while
model-based (conformance) testing has been studied intensively, today only a few tools based on variants of the
ioco conformance relation are still maintained actively, such as TESTOR, implemented on top of CADP [220].

42https://gs.statcounter.com/vendor-market-share/mobile/brazil
43https://gs.statcounter.com/vendor-market-share/mobile/worldwide
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Typically, the underlying formal models of test case generation approaches are IOLTS or other operational
models. The main reason to use CSP as a semantic foundation for the project was that CSP, being a process
algebra, ofers a variety of process operators, semantic models, and process reinement notions. This provides
a rich infrastructure to support the characterization of test generation at a very high level of abstraction, and,
particularly, agnostic to algorithms that rely on the model structure. Test generation is accomplished using
reinement assertions in the CSP traces model. The initial generation strategy considered only control low
behaviour, but, subsequently, it was straightforward to evolve it, in a conservative way, to incorporate data and
time as orthogonal aspects.. Concerning the time to generate the test cases, a tool like TaRGeT is incomparably
faster than designing test cases manually. Nevertheless, there are other activities in the process, beyond test
design, that need to be performed both in case the tests are designed manually and when they are generated
automatically. Particularly, the inspection phase takes a signiicant amount of time.
Currently, more elaborate frameworks are being developed with the aim of covering the full life cycle of test

generation and execution. An exciting area for future investigation is the use of robotic arms to automate test
execution that needs human interaction, based on AI, as well as voice, image, and natural language processing
techniques.
Concerning other initiatives on the application of formal methods in Brazil, we single out a cooperation

with Embraer, a Brazilian commercial aircraft company that is currently one of the largest in the world. This
partnership has involved both formal veriication using Simulink and the probabilistic model checker PRISM [151]
and rigorous approaches to software testing [79], using so-called expanded data-low reactive systems encoded
as TIOTS, an alternative timed model based on IOLTS and ioco. Another successful cooperation was the one
with Bang & Olufsen (B & O) in the context of the EU project COMPASS. The particular application was a
veriied design of a leadership election protocol that ensures the absence of deadlock in the (possibly dynamic)
coniguration of a network of B & O audio and video equipments [8], using CSP and the model checker FDR.

4 Educating for Formal Methods in Industry

It is our irm belief that formal methods, from formal speciication to reinement and veriication, constitute a
core knowledge area in Computer Science with widespread relevance in many of today’s innovative applications,
like reliable autonomous vehicles and (robotic) systems, in a society that increasingly relies on software. Yet
in most of today’s Computer Science curricula, discrete mathematics and logic courses are often perceived
by Computer Science students as early challenges in their education, apparently disconnected from modern
programming languages. łA knowledge area directly focused on formal methods can help contextualize discrete
mathematics courses for students, and can demonstrate why such courses are taught so early as a starting
foundation for a solid computer science educationž [70].

Formal methods do not appear in CS2023, the ACM/IEEE-CS/AAAI Computer Science Curricula44 [197], to the
extent that relects their pivotal role in Computer Science and the beneits that formal methods education can
bring to industry. CS2023 encompasses 17 knowledge areas45. In [34, 70, 118], it is argumented that eight of them
are related to formal methods. Here we list these areas and provide suggestions for what to teach in relation with
formal methods:

Algorithmic Foundations Teach to reason (at least informally) about the correctness of the classical algo-
rithms (e.g., a bug was found in the TimSort sorting algorithm of the Java standard library using formal
methods [153]).

44https://csed.acm.org/
45https://csed.acm.org/knowledge-areas/
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Architecture and Organization Teach to validate the accuracy of hardware designs and that the interface
behaviour of (software and hardware) components in architectural designs adhere to their speciications
(e.g., by verifying security requirements in hardware security architectures [124]).

Artiicial Intelligence Teach to capture the assumptions of the designs of deep neural networks as used in
large language models as well as their veriication or counterexample-based retraining (e.g., with model
checking or interactive theorem proving [71]).

Parallel and Distributed Computing Teach how to understand and justify the correctness of systems
in the presence of the topics addressed in this knowledge area (e.g., program parallelisation, atomicity,
concurrency, progress, deadlocks, faults, safety, and liveness), which in essence lists formal methods as a
prerequisite (viz., logic, discrete mathematics, and software engineering foundations).

Security Teach how to understand vulnerabilities of, and threats against, software systems, algorithms and
protocols, ensuring resilience against attacks and providing assurance of security properties (including
concepts like privacy, cryptography, and encryption properties [96]).

Software Development Fundamentals Teach to reason (at least informally) about the correctness of pro-
grams (e.g., by specifying requirements and justifying why these are met by the proposed program [230])
and to understand how algorithms impact the performance of programs.

Databases Teach description logic for reasoning on data management (e.g., expressing ontologies, integrating
multiple data sources, and expressing and evaluating queries [59]).

Software Engineering Teach formal methods, which is actually recommended in this knowledge area
(deined as łmathematically rigorous mechanisms to apply to software, from speciication to veriicationž)
as a non-core knowledge unit with suggested learning outcomes like łdescribe the role formal speciication
and analysis techniques can play in the development of complex software and compare their use as
validation and veriication techniques with testingž and łapply formal speciication and analysis techniques
to software designs and programs with low complexity,ž while testing is the primary validation technique
in other modules. As mentioned in Section 2.1, formal methods and testing are not mutually exclusive.

We believe in the importance of formal methods, and in particular of the capacity to abstract and mathematical
reasoning that are taught as part of any formal methods course, as fundamental Computer Science skills that
industry would proit fromwhen hiring computer scientists. This is highly relevant, since we have seen that formal
methods are becoming widely applied in industry. In Section 3, we have provided evidence of formal-methods
applications in industry through papers and testimonies from representatives who, either directly or indirectly, use
or have used formal methods in their industrial project endeavours. Importantly, they are spread geographically,
including Europe, Asia, North and South America, and involve well-known worldwide companies such as Alstom,
Amazon, ASML, Bang & Olufsen, Boeing, Collins Aerospace, Embraer, Facebook, Google, Huawei, IBM, Intel,
Microsoft, Motorola, Oracle, Siemens, and Volvo. The current ofering of formal methods in Computer Science
education is inadequate because every Computer Science graduate needs to be educated in formal methods, since
they can support algorithmic problem solving, model-driven engineering, requirements engineering, security,
software architecture, software product lines, and many more areas of Computer Science, and they are applicable
in numerous industrial domains, not limited to safety-critical applications.
This is conirmed by the aforementioned recent survey among 130 experts in formal methods, which also

contained ive questions on formal methods in education [138, Section 6: Formal Methods in Education]. The
irst two questions addressed the course level and the level of importance, while further questions concerned the
content of such courses. In particular, the irst question asked the experts to indicate the most suitable place for
formal methods in an ideal teaching curriculum:When and where should formal methods be taught? A convincing
79.2% responded łin bachelor courses at the university.ž The second question asked the experts about the situation
of formal methods in Computer Science education: What is your opinion on the level of importance currently
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attributed to teaching of formal methods at universities? Exactly 50% responded łnot enough attentionž and
31.5% responded łsuicient attention, but scattered all over.ž These results indicate a consensus about the essential
role of education to give the next generations of students a suicient background and practical experience in
formal methods. This is of paramount importance because in the same survey, 71.5% of the respondents identiied
as the single most important limiting factor for a wider adoption of formal methods by industry the fact that
łengineers lack proper training in formal methodsž [138, Section 5: Formal Methods in Industry]. This conclusion
is shared by a recent white paper [82], which advocates łthe inclusion of a compulsory formal methods course in
Computer Science and software engineering curriculaž based on the observation that łthere is a lack of Computer
Science graduates who are qualiied to apply formal methods in industry,ž and by a recent textbook [268] on
formal methods in software engineering, which claims that łin computer science and software engineering
education, Formal Methods usually play a minor role only.ž In the context of safety-critical and mission-critical
applications, a very recent paper recognizes łan urgent need to emphasize and integrate Formal Methods into
the undergraduate curriculum in Computer Science in the United States,ž since łthe lack of a well-structured
exposure to formal methods is a serious shortcoming in our computing curriculaž [261]. The authors also provide
several concrete suggestions for introducing the concepts and use of formal methods into existing Computer
Science curricula (e.g., Data Structures, Logic circuit design, Concepts of programming languages, Software
Engineering). łWe cannot expect graduates to become experts in program veriication as professionals if they
never encountered the ideas as students.ž The authors of [105] propose to approach formal methods already in
basic education (i.e., primary and secondary education) through ive fundamental notions (viz., speciication,
formalization, modelling, veriication, and reasoning) and they report on their experience in doing so (by means
of gamiication of transformation rules of typed graph grammars using Pac-Man).

Support for teachers is available, for instance through recent textbooks on formalmethods [43, 175, 240, 246, 268]
and advanced lectures on formal methods [44ś48, 263], but also via Formal Methods Europe (FME)46 and the
ERCIM working group on Formal Methods for Industrial Critical Systems (FMICS)47.

5 Conclusion

We have demonstrated that formal methods are important to quite a number of industry segments, not limited
to safety-critical domains, and we have made a case for the inclusion of formal methods as a separate topic in
Computer Science education. This strengthens the evidence put forward in [70] for claiming that formal methods
should be taught as a separate topic in undergraduate curricula, not only because of their importance in industry
but also because of the discipline they instil in students as they learn to develop systems through abstraction and
mathematical reasoning, as demonstrated in [118, 261]. Moreover, we have shown that this can be done without
displacing the other łengineeringž aspects of Computer Science already widely accepted as essential. On the
contrary, we have shown that formal methods have the potential to support and strengthen at least eight of the
17 knowledge areas of CS2023.

The formal methods community recently received support from a rather unexpected source. The White House
advocates the use of formal methods over testing for demonstrating the correctness of software and considers it
vital to make formal methods widely accessible to accelerate broad adoption [297, Part II: Securing the Building
Blocks of CyberspaceÐFormal Methods]: łGiven the complexities of code, testing is a necessary but insuicient
step in the development process to fully reduce vulnerabilities at scale. If correctness is deined as the ability
of a piece of software to meet a speciic security requirement, then it is possible to demonstrate correctness
using mathematical techniques called formal methods. These techniques, often used to prove a range of software
outcomes, can also be used in a cybersecurity context and are viable even in complex environments like space.

46https://fmeurope.org/
47https://fmics.inria.fr/
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While formal methods have been studied for decades, their deployment remains limited; further innovation in
approaches to make formal methods widely accessible is vital to accelerate broad adoption. Doing so enables
formal methods to serve as another powerful tool to give software developers greater assurance that entire classes
of vulnerabilities, even beyond memory safety bugs, are absent.ž This report highlights static analysis and model

checkers as speciic examples of types of formal methods.
To conclude, creating correct software is an engineering problem and software development should therefore

be an engineering discipline. Mastering the complexity of software systems is a formidable intellectual challenge
and Computer Science graduates need to understand the powerful formal methods and tools that are available.
Then they can choose the right technique and tool for each task and with suitable humility deserve the title of
Software Engineer.
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