
Formal Methods in Industry

MAURICE H. TER BEEK, Formal Methods and Tools Lab, CNR-ISTI, Pisa, Italy

ROD CHAPMAN, Automated Reasoning Group, Amazon Web Services, Bath, United Kingdom of Great

Britain and Northern Ireland

RANCE CLEAVELAND∗, University of Maryland, College Park, United States

HUBERT GARAVEL, INRIA, Grenoble, France
RONG GU,Mälardalen University, Västerås, Sweden

IVO TER HORST, ASML, Veldhoven, Netherlands

JEROEN J. A. KEIREN, Eindhoven University of Technology, Eindhoven, Netherlands

THIERRY LECOMTE, CLEARSY Systems Engineering, Aix-en-Provence, France

MICHAEL LEUSCHEL, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

KRISTIN YVONNE ROZIER, Iowa State University, Ames, United States

AUGUSTO SAMPAIO, Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil

CRISTINA SECELEANU,Mälardalen University, Västerås, Sweden

MARTYN THOMAS, Gresham College, London, United Kingdom of Great Britain and Northern Ireland

TIM A. C. WILLEMSE, Eindhoven University of Technology, Eindhoven, Netherlands

LIJUN ZHANG, Institute of Software, Chinese Academy of Sciences, Beijing, China

Formal methods encompass a wide choice of techniques and tools for the speciication, development, analysis, and veriication

of software and hardware systems. Formal methods are widely applied in industry, in activities ranging from the elicitation of

requirements and the early design phases all the way to the deployment, coniguration, and runtime monitoring of actual

systems. Formal methods allow one to precisely specify the environment in which a system operates, the requirements and

properties that the system should satisfy, the models of the system used during the various design steps, and the code embedded

in the inal implementation, as well as to express conformance relations between these speciications. We present a broad scope

∗The author died during the second revision of this paper. We gratefully acknowledge his contributions in the appropriate section at the end

of this paper.

Authors’ Contact Information: Maurice H. ter Beek, Formal Methods and Tools Lab, CNR-ISTI, Pisa, Italy; e-mail: maurice.terbeek@isti.cnr.it;

Rod Chapman, Automated Reasoning Group, Amazon Web Services, Bath, United Kingdom of Great Britain and Northern Ireland; e-

mail: rodchap@amazon.co.uk; Rance Cleaveland, University of Maryland, College Park, Maryland, United States; e-mail: rance@cs.umd.

edu; Hubert Garavel, INRIA, Grenoble, France; e-mail: hubert.garavel@inria.fr; Rong Gu, Mälardalen University, Västerås, Västmanland,

Sweden; e-mail: rong.gu@mdu.se; Ivo ter Horst, ASML, Veldhoven, Netherlands; e-mail: ivo.ter.horst@asml.com; Jeroen J. A. Keiren,

Eindhoven University of Technology, Eindhoven, Noord-Brabant, Netherlands; e-mail: j.j.a.keiren@tue.nl; Thierry Lecomte, CLEARSY

Systems Engineering, Aix-en-Provence, France; e-mail: thierry.lecomte@clearsy.com; Michael Leuschel, Heinrich Heine University Düsseldorf,

Düsseldorf, Nordrhein-Westfalen, Germany; e-mail: leuschel@hhu.de; Kristin Yvonne Rozier, Iowa State University, Ames, Iowa, United States;

e-mail: kyrozier@iastate.edu; Augusto Sampaio, Centro de Informática, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil;

e-mail: acas@cin.ufpe.br; Cristina Seceleanu, Mälardalen University, Västerås, Västmanland, Sweden; e-mail: cristina.seceleanu@mdu.se;

Martyn Thomas, Gresham College, London, United Kingdom of Great Britain and Northern Ireland; e-mail: martyn@mctar.uk; Tim A. C.

Willemse, Eindhoven University of Technology, Eindhoven, Noord-Brabant, Netherlands; e-mail: t.a.c.willemse@tue.nl; Lijun Zhang, Institute

of Software, Chinese Academy of Sciences, Beijing, China; e-mail: zhanglj@ios.ac.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1433-299X/2024/8-ART

https://doi.org/10.1145/3689374

Form. Asp. Comput.

HTTPS://ORCID.ORG/0000-0002-2930-6367
HTTPS://ORCID.ORG/0000-0003-2717-760X
HTTPS://ORCID.ORG/0000-0002-4952-5380
HTTPS://ORCID.ORG/0009-0000-5304-8081
HTTPS://ORCID.ORG/0000-0003-0570-6005
HTTPS://ORCID.ORG/0009-0003-2655-2698
HTTPS://ORCID.ORG/0000-0002-5772-9527
HTTPS://ORCID.ORG/0000-0001-8977-4827
HTTPS://ORCID.ORG/0000-0002-4595-1518
HTTPS://ORCID.ORG/0000-0002-6718-2828
HTTPS://ORCID.ORG/0000-0001-6593-577X
HTTPS://ORCID.ORG/0000-0003-2870-2680
HTTPS://ORCID.ORG/0000-0003-1226-2772
HTTPS://ORCID.ORG/0000-0003-3049-7962
HTTPS://ORCID.ORG/0000-0002-3692-2088
https://orcid.org/0000-0002-2930-6367
https://orcid.org/0000-0003-2717-760X
https://orcid.org/0000-0002-4952-5380
https://orcid.org/0009-0000-5304-8081
https://orcid.org/0000-0003-0570-6005
https://orcid.org/0009-0003-2655-2698
https://orcid.org/0000-0002-5772-9527
https://orcid.org/0000-0001-8977-4827
https://orcid.org/0000-0002-4595-1518
https://orcid.org/0000-0002-6718-2828
https://orcid.org/0000-0001-6593-577X
https://orcid.org/0000-0003-2870-2680
https://orcid.org/0000-0003-1226-2772
https://orcid.org/0000-0003-3049-7962
https://orcid.org/0000-0003-3049-7962
https://orcid.org/0000-0002-3692-2088
https://doi.org/10.1145/3689374
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689374&domain=pdf&date_stamp=2024-08-21


2 • M. H. ter Beek et al.

of successful applications of formal methods in industry, not limited to the well-known success stories from the safety-critical

domain, like railways and other transportation systems, but also covering other areas such as lithography manufacturing and

cloud security in e-commerce, to name but a few. We also report testimonies from a number of representatives from industry

who, either directly or indirectly, use or have used formal methods in their industrial project endeavours. These persons

are spread geographically, including Europe, Asia, North and South America, and the involved projects witness the large

coverage of applications of formal methods, not limited to the safety-critical domain. We thus make a case for the importance

of formal methods, and in particular of the capacity to abstract and mathematical reasoning that are taught as part of any

formal methods course. These are fundamental Computer Science skills that graduates should proit from when working as

computer scientists in industry, as conirmed by industry representatives.

CCS Concepts: · Software and its engineering→ Formal methods; · Social and professional topics→ Computer

science education.

Additional Key Words and Phrases: Formal Methods, Computer Science Education

1 Introduction

Formal methods collectively refer to an array of methods for mathematically specifying and verifying computer-
system behaviour. In such approaches, systems are interpreted as mathematically precise structures, whether as
state machines, as functions mapping initial to inal states, or as logical formulas describing system behaviour.
Speciications also are given in a mathematically well-founded manner, whether as logical properties or state
machines, and the notion of a system satisfying a speciication is also given a mathematical deinition. Given
these elements, formally verifying a system involves constructing a mathematical proof that the system satisies
the speciication. The key motivation for these techniques is the strength of the correctness guarantees they
provide: in contrast to testing-based and inspection-based techniques, a proof conclusively demonstrates that the
system in question, at the level of abstraction that it is presented, is correct with respect to its speciication. Formal
methods complement other veriication and validation techniques, such as testing or simulation [169].
Formal methods have been studied in the computing community since at least the 1960s, with seminal work

by Floyd [133], Hoare [170], and Dijkstra [113] deining techniques for proving programs correct. Later work by
Pnueli, Lamport, Clarke, Emerson, and others considered the automated veriication of state machines vis à vis
properties in temporal logics [87, 201, 256]. Still others, including Boyer, Moore, Gordon, and Coquand [66, 100,
152], developed automated theorem provers for checking the correctness of veriication proofs. Later researchers
have built on and improved these eforts, and formal methods remain a vital and fundamental area of basic
computing research. Notably, the Cost of Poor Software Quality (CPSQ) is astonishing. In the 2022 Report1 for
the CPQS in the US, the amount is considered at least US$ 2,41 trillion. Considering the more speciic cost of
inding and ixing bugs, the estimation is US$ 607 billion. Therefore, there is scope for applications of formal
methods and tools to improve this situation in several domains, much beyond the context of safety-critical
systems. Historical references from long-time advocates of formal methods relect on their industrial application
through the metaphors of myths and commandments of formal methods and invite their uptake in industry in
order to realize their beneits [29, 61ś65, 84, 102, 161, 162, 195, 227, 249, 276, 287, 298]. Throughout the last three
decades several major surveys of formal methods have appeared in the literature [90, 135, 138, 144, 299].

1https://www.it-cisq.org/

Form. Asp. Comput.

https://www.it-cisq.org/


Formal Methods in Industry • 3

This paper demonstrates that formal methods have wide-ranging practical value by reporting on the increasing
use of formal methods in industry, and it makes a case for the inclusion of formal methods as a separate topic in
Computer Science education. This is well agreed upon by the formal methods community. To make this point
better known to the Computer Science community at large and, in particular, to those involved in Computer
Science education, the remainder of this article develops as follows. First, in Section 2, we give more detail about
what formal methods are, precisely. Then, in Section 3, we survey the vast array of formal-methods applications,
much beyond the context of safety-critical systems2. In our brief survey, we cite speciic instances across a
variety of diferent domains of successful applications of the techniques in delivering systems that, by their
nature, must be reliable. These include very recent work, which was not available ive years ago when the most
recent above-mentioned surveys were conducted, as well as testimonies contributed by current industry leaders.
Next, in Section 4, we argue that undergraduate curricula should include formal methods as a topic, not only
because of their growing importance in industry, as witnessed by the evidence presented in this paper, but also
because formal methods contribute to cultivate abstract thinking, enabling students to better understand and
solve complex problems, and because of the discipline they instil in students as they learn to develop systems. In
the words of Rance Cleaveland, łstudents who learn formal methods are better developers, because they learn to
think about correctness while they are building systems.ž Further support for such statements can be found in [34]
and in the accompanying papers [118], which underlines the importance of formal methods thinking in Computer
Science education, and [70], which argues that every computer scientist needs to know formal methods: łsoftware
developers not being aware of the various beneits of formal methods cannot be called computer scientists or
software engineers.ž Finally, in Section 5, we conclude the paper.

2 Formal Methods and Tools

Complex, industrial systems typically come into being according to some standardized software development
methodology. Most methodologies distinguish diferent phases in the development of a system.While these phases
may difer across development methodologies, and carry diferent names, in general, there is a requirements
analysis phase, an architecture design phase, a system design phase, and an implementation phase. Each phase
yields a set of artefacts. Apart from describing the type of artefacts delivered at each phase in the development
of a system, a methodology also describes the validation and veriication methods and activities needed to
ensure the internal consistency of an artefact, and the consistency of artefacts across diferent phases. For
instance, the artefacts produced during the requirements phase need to be non-contradictory, whereas the
artefacts produced in the design phase need to be consistent with the artefacts delivered in the requirements
phase. Formal methods, and their implementation in widely available tools, provide automated, repeatable,
easily checkable evidence to support these needs. Triggered by their successful applications in industry, we
mostly focus on a posteriori veriication of (software) systems. We do not discuss in detail the veriication of
formal speciications of requirements nor the alternative of a priori veriication techniques, such as developing
correct-by-construction system implementations based on formal methods that provide correctness-preserving
reinement transformations (like in the seminal work on the reinement calculus and related calculi by Back [10],
Morris [231], and Morgan [230], based on Dijkstra’s guarded command language [114]).
In the remainder of this section, we irst deine and introduce formal methods in Section 2.1, after which we

provide an overview of selected formal methods and tools in Section 2.2.

2.1 What are Formal Methods?

2We survey formal-methods applications from well-known and representative domains, including papers and testimonies that have been

selected based on the expertise and experience of the authors, spread geographically as well as across diferent application domains.

Form. Asp. Comput.



4 • M. H. ter Beek et al.

In line with [138], in this paper we deine formal methods as mathematically rigorous techniques for the
speciication, design, validation, and (manual or automated) veriication of software and (logical) hardware
systems. In short, formal methods enable checking that behaviours (statements in a formal semantics such as
mathematical logic) always hold in a system (speciied in a language with a formal semantics). They examine
the entire behaviour space of the system, covering all possible inputs, to provide assurance derived from a
mathematical proof that the speciied system’s behaviour is correct. In other words, formal methods address
the veriication problem: given formal deinitions of what a system does (�) and what it should do (�), formal
methods show that� satisies � . Intuitively, formal methods show that the system does what you think it should
do and nothing else.

That last part, łand nothing else,ž distinguishes exhaustive formal methods from non-exhaustive methods for
veriication, such as testing [14, 50, 58, 226] and simulation [181, 291]. These popular methods reason over the
input space of a system by producing a set of individual system executions. By aggregating a large set of executions,
they can provide probabilistic answers to questions such as: how often does some behaviour occur, how many
inputs produce a certain type of output, or how likely is something to occur. They can provide a proof of the
existence of a run of a system, such as a run that exhibits a fault, but since neither testing nor simulation explores
all possible system behaviour (state space), they can never show the absence of such a run. For that, we need
(exhaustive) formal methods.

Formal methods reason over the behaviour space of a system. They yield Boolean (typically true or false, not
probabilistic) answers to questions like: is it possible for something to occur, does this property hold for all system
executions, or even how many system execution paths lead to a certain output. While testing and simulation
involve executing the system many times to gather examples for veriication, formal methods tools generally
execute once but reason exhaustively over the complete set of system behaviours, covering all possible executions.
This is also why there is such a variety of formal methods (as opposed to a singular formal method) Ð diferent
methods scale diferently and diferent systems require diferent proof strategies to enable such exhaustive
reasoning. Successful application of formal methods requires some knowledge of the underlying system, and
therefore which formal method(s) to apply.

In practice, (exhaustive) formalmethods provide quite a diferent understanding of a system than non-exhaustive
or informal methods. Informal or semi-formal methods refer to techniques and tools that are not fully formal, i.e.,
lacking a precise and unambiguously deined syntax and semantics. Formal methods can prove both the presence
and the absence of given behaviour. Because mathematical proofs reason equally well over partially-deined
systems as fully-deined ones, formal methods can check systems starting from the earliest stages of the system
design. While simulation and testing require some form of executable to run, formal methods do not. Nor are
formal methods sensitive to systems being used in ways they were not intended, such as receiving unanticipated
inputs. These are precisely the properties that make formal methods essential tools for industry, e.g., for certifying
software and hardware systems, also for non-safety-critical systems. Anticipating the testimonies from Rod
Chapman (Amazon Web Services) in Section 3.6 and Ivo ter Horst (ASML) in Section 3.8, respectively:

Chapman: łA key point is that AR [automated reasoning] builds trust with customers by allowing universal
and sound veriication of properties of our infrastructure and customers’ applications. By łuniversal,ž
AWS means properties that hold for all users, all storage buckets, all networks, all compute instances, all
conigurations, and so on Ð freeing the user from having to łtestž a nearly ininite state space.ž

ter Horst: łTo make ASML’s lithography systems run reliably and consistently ASML needs software that
sends unambiguous instructions in every situation to the carefully engineered hardware. Oneway that ASML
ensures this is by formally verifying (model checking) the speciied machine behaviour and automatically
generating correct and semantically equivalent code from those models.ž

Form. Asp. Comput.



Formal Methods in Industry • 5

For this reason, experts continue to argue for the continuous integration of formal methods throughout the
complex industrial system development lifecycle, and for the formal methods education of system developers [138]
(cf. Section 3.1). In our experience, reported in this paper, which covers 50 years of work in industry as well as
in academia, most software projects lack the discipline seen in other branches of engineering. Few developers
approach their work with the understanding that mistakes will be made and that they should select and use the
methods and tools that were designed to prevent errors and to detect errors as early as possible after they are
made. Too few Computer Science graduates work in a way that shows that they understand their responsibility
to be able to provide evidence that their software meets their customer’s or end user’s requirements Ð and that
evidence from testing can never be strong enough on its own.
This does not mean that we are suggesting that formal methods exclude or are a replacement for testing

or simulation. As mentioned in the Introduction, these are complementary techniques for the central task of
veriication and validation (cf. [169] and, for a concrete example, Section 3.9: Formal Testing of Mobile Devices
from Natural Language Requirements). Our purpose is to emphasize the distinguishing feature of formal methods
in being capable of mathematically ensuring the absence of errors with respect to a given speciication.

2.2 Overview of Formal Methods and Tools

Formal methods ofer the means to both formally describe the artefacts delivered at each phase in the system
development lifecycle, and aid in their automated validation and veriication [7, 135]. Some tools prove useful
throughout the development methodology; others may specialize to address speciic phases and activities. As
mentioned in the beginning of this section, we focus on formal methods for the veriication phase. We refer
to [70] for a discussion on formal methods for all phases: identifying and formalizing requirements, modelling
and formal speciication, design and implementation, veriication and validation, and maintenance and evolution.
There are two core formal (veriication) methods from which all other formal (veriication) methods derive: model

checking [17, 88] and theorem proving [238, 266].
Theorem provers, such as Coq3 [51], Isabelle [241], Lean [233], Vampire [264], KeYmaera X [254, 255], LP [140],

PVS [248], Z3 [232], and others allow users to mechanically, and sometimes even automatically, prove generic
statements and theories about system artefacts formalized as mathematical theories. Theorem proving has found
its way in tool sets for state-based reinement approaches (as originally advocated by VDM [188], Z [282], and
subsequently B [2, 3]), such as Atelier B4 and Event-B5. A theorem prover’s independence of speciic problem
domains is one of its major strong points. Each theorem prover brings its own library of previous proofs upon
which it can draw to eiciently prove new theorems. Theorem provers difer in the contents of these libraries
and in their input logics. Typically users choose which theorem prover to use for a particular job by choosing the
input language that most intuitively describes the veriication question at hand and checking the proof library
for previous proofs useful in constructing the needed proof. While a theorem prover can complete some proofs
automatically after the user sets up the theorem correctly, others require substantial interaction from the user to
complete the proof, so utilizing previous results from the proof library and having a clearly-deined proof strategy
are essential. Theorem provers are very powerful tools that can reason about very large, or even ininite-state,
systems and complex mathematical algorithms.
Process-algebraic approaches such as ACP [15], CCS [228], CSP [171, 269], LOTOS [57], or LNT [137] have

inspired the development of model-checking toolsets such as CADP6 [136], CWB [91] / CWB-NC [93], FDR [143],
and mCRL2 [9, 75, 157] (cf. [92]). These and other model checkers, such as SPIN7 [172], NuSMV [86] / nuXmv [80],

3Coq received the 2013 ACM Software System Award.
4https://www.atelierb.eu/
5http://www.event-b.org/
6CADP received the ETAPS Test-of-Time Tool Award 2023.
7SPIN received the 2001 ACM Software System Award.

Form. Asp. Comput.

https://www.atelierb.eu/
http://www.event-b.org/


6 • M. H. ter Beek et al.

UPPAAL8 [38, 39, 109, 110], ProB [211], and ABC [69], provide a convenient łpush-buttonž technique for auto-
matically assessing the consistency of an artefact (e.g., an algorithm or design described in a formal semantics)
by automatically verifying whether it satisies behavioural speciications typically expressed as assertions or
using some form of temporal logic. The industrial appeal of model checking includes the limited user interaction
required to achieve a complete, exhaustive veriication result. To efectively use a model checker, the user needs
only two inputs: the formal artefact or system description, and the logical speciication to check it against. The
user then pushes a button and receives either conirmation, e.g., in the form of a certiicate, that the system
artefact always upholds the speciication, or a counterexample proving that it does not. A counterexample is
a system trace stepping state-by-state through a valid execution of the system until a clear violation of the
speciication occurs. Counterexamples are therefore incredibly useful for debugging. Model checkers produce
results that are exhaustive: if there exists any system execution that violates the speciication, they will produce a
counterexample.
In this way, both theorem provers and model checkers efectively prove both the presence and the absence

of bugs. Moreover, both theorem provers and model checkers require guidance from a knowledgeable user to
structure and organize their speciications, and in the case of theorem provers, also their proofs. Model checkers,
on the other hand, have fully-automatic proofs but come with some limitations when compared to theorem
provers. Due to their exhaustive exploration of the state space, model checkers are sensitive to the shape and size
of the state space of the input system description and often do not allow elements like loating-point variables
or unbounded integers. Also, the presence of superluous information not relevant to the core algorithm under
veriication can dramatically slow down the model checker or cause it to time-out. Therefore the user must be
careful to describe only the relevant system logic in the input description to mitigate the state-space explosion
problem, where the number of states needed to model the system accurately may exceed the amount of available
computer memory. łDespite the development of several very efective methods to combat this problem [. . . ],
models of realistic systems may still be too large to it in memoryž [17, Section 1.2.2: Strengths and Weaknesses].
Similarly to choosing a theorem prover, users choose model checkers based on the eiciency of the input

modelling language at describing the veriication problem at hand. There are two types of model checkers, explicit
and symbolic, and some knowledge of which of these two types is best-suited to the problem is also helpful.
Explicit model checkers explicitly represent the systems’s behaviour space as a type of graph in memory and
the model checker systematically explores each state and veriies whether it satisies the given speciication.
Such an enumerative representation is suitable for systems with smaller state spaces, or state spaces with certain
types of repeated patterns. Instead of representing individual states or transitions, symbolic model checkers
represent sets of states and sets of transitions symbolically using data structures such as Boolean formulas or
Binary Decision Diagrams (BDDs). Symbolic model checking is particularly suitable for systems with a large,
or even ininite state space. Finally, for both theorem proving and model checking, the user must be careful
to specify the behaviour property correctly. Since many system requirements in natural language are vague,
incomplete, or confusing, this can be a very challenging task [271]. NASA’s Formal Requirements Elicitation
Tool (FRET)9 [142] for the elicitation, formalization and understanding of requirements may be of help. FRET
assigns unambiguous semantics to requirements written in a structured natural language and allows to export the
requirements into forms that can be used by a variety of analysis tools, among which Simulink Design Veriier
and SMV (cf., e.g., [123], where it is reported that the industrial partner found the FRET tool łvery easy to usež).
Next to these exhaustive qualitative veriication techniques, it is worth mentioning exhaustive quantitative

methods such as probabilistic (a.k.a. stochastic) model checking, and non-exhaustive methods such as runtime

8https://uppaal.org/
9https://software.nasa.gov/software/ARC-18066-1

Form. Asp. Comput.

https://uppaal.org/
https://software.nasa.gov/software/ARC-18066-1


Formal Methods in Industry • 7

veriication, model-based testing and statistical model checking, and light-weight formal methods such as static
analysis.
Static analysis concerns the derivation of properties of interest from source code (or an intermediate repre-

sentation) without executing the code [265], meaning precision is the price to pay. Well-known static analysis
tools include Astrée10 [112], Coccinelle11 [204], Frama-C12 [194], and Lint [187] (cf. [116] for key lessons from
designing the static analyses tools Infer and Zoncolan and [210] for a comparison of the static analysis tools
Better Code Hub, CheckStyle, Coverity Scan, FindBugs, PMD, and SonarQube). Typically, one has to decide
between under- and overapproximations (e.g., abstract interpretation [103]), with the possibility of both false
positives and false negatives. Underapproximation13 is a consequence of an approach representing all possible
program behaviours in a way that includes some, but not necessarily all actual behaviour (thus giving rise to
false negatives, i.e., the analysis may fail to detect certain properties of the code), whereas an overapproximation
represents the set of all possible program behaviour in a way that includes all actual behaviour as well as possibly
some that are not possible (thus giving rise to false positives, i.e., the analysis may detect certain problems that do
not actually exist in the code). The choice between under- and overapproximation depends on the speciic goals
of the analysis and the trade-of between precision and completeness, where the challenge is to ind a suitable
abstraction that is both computationally feasible and provides meaningful insights into the program’s behaviour
while dealing with false positives and false negatives.

Model-based testing is a formal-methods approach to testing that complements formal veriication and model
checking and increases the eiciency and efectiveness of software testing [290]. It uses a formal or semi-formal
model to represent the desired behaviour of a system under test, which serves as the basis for generating test
cases and executing tests. It is typically more eicient than traditional testing approaches, since it automates
the test case generation process. Moreover, by systematically deriving test cases from the model, often a better
coverage of the system’s behaviour is achieved. Model-based testing complements other testing methodologies
and is part of the broader landscape of model-driven engineering [73].

Runtime veriication monitors and analyzes actual software (and hardware) system behaviour while the system
is running [27, 94]. It ofers improved practical applicability and scalability compared to exhaustive formal
veriication, such as model checking and theorem proving, by analyzing only oneÐor a fewÐexecution traces of
the actual system. Runtime monitoring derives from model checking, except that in model checking the running
system is the input system description, so instead of an exhaustive analysis of all possible system runs (like model
checking), runtime monitoring analyses only the łcurrentž system run against the input logical speciication (cf.
[272] for a disambiguation from simulation).
Compared to model checking, which focuses on absolute guarantees of correctness, probabilistic or sto-

chastic model checking focus on modelling and analyzing systems that exhibit probabilistic or stochastic be-
haviour [16, 17, 198, 200, 263]. Such aspects are essential in cases of unreliable or unpredictable system behaviour
and performance evaluation. Instead of providing a yes/no answer to the question as to whether a system
model (�) satisies a temporal logic property (�), the answers are of the form łwith a likelihood of 99%,� will
satisfy � ,ž where � is expressed in a stochastic or probabilistic temporal logic. Statistical model checking [5, 208]
uses a simulation- and sample-based approach to reason about precise properties speciied in a stochastic temporal
logic, ofering a scalability advantage over exhaustive (or probabilistic) model checking due to the fact that
there is no need to analyze entire state spaces. Moreover, even though the outputs of sample-based methods

10https://www.astree.ens.fr/
11https://coccinelle.gitlabpages.inria.fr/website/
12https://frama-c.com/
13Not to be confused with underapproximate triples in incorrectness logic [245], a logical underapproximate theory for proving the presence

of problems.

Form. Asp. Comput.

https://www.astree.ens.fr/
https://coccinelle.gitlabpages.inria.fr/website/
https://frama-c.com/


8 • M. H. ter Beek et al.

are not always correct, statistical inference enables quantifying the conidence in the obtained result14, thus
compensating for the lack of exact results (100% conidence).

3 Formal Methods in Industry

In this section, we present a broad scope of applications of formal methods in industry, not limited to the safety-
critical domain, including testimonies contributed by Rod Chapman from Amazon Web Services, leader in cloud
computing (cf. Section 3.6), and Ivo ter Horst from ASML, leader in the semiconductor industry (cf. Section 3.8).
The reported applications of formal methods in industry range from experiments with formal methods in industry
to routine applications of formal methods in industry as part of the development process. After a summary
of recent literature on successful applications of formal methods in Section 3.1, we describe a selection of
success stories for applying formal methods in the safety-critical domains of railways, automotive, and aerospace
in Sections 3.2ś3.4. Subsequently, we report testimonies of success stories in the non-safety-critical domains
of operating systems in Section 3.5, e-commerce in Section 3.6, hardware design in Section 3.7, lithography
manufacturing in Section 3.8, and mobile devices in Section 3.9.

3.1 Summary of Recent Literature

Success stories of the application of formal methods in industry traditionally focus on their application to safety-
critical systems, such as transport, nuclear power plants, and medical devices. Arguably one of the most cited ones
concerns the fatal accidents with the infamous Therac-25 software-controlled radiation therapy machine that
were, among others, due to software coding errors. As demonstrated in [213, 214, 288, 289] (using, among others,
the process algebra LOTOS [57] and the theorem prover LP [140]) these software errors could have been avoided
if łbasic software engineering principlesž and łsophisticated modeling and analysis toolsž had been applied. Alas,
what Nancy Leveson wrote in 1993, łsoftware should be subjected to extensive testing and formal analysisž [214],
and in 2017, łit’s time for computer science practitioners to be better educated about engineering for safety.ž [213],
is still true. Transport applications include, but are not limited to, the railway [33, 77, 207] and aerospace [234, 281]
domains. We refer to, e.g., [32, 36, 128, 145, 174, 299] for more complete overviews of such applications. A recent
survey among 216 participants studying the use of formal methods for mission-critical software indicates łan
increased intent to apply FMs in industry, suggesting a positively perceived usefulnessž [144].
Outside safety-critical applications, the literature also reports a recent uptake in the application of formal

methods [82]. Formal methods have, for example, been applied to ensure the quality of cloud services at Ama-
zon [12, 239], cloud databases at Huawei [134], and mobile apps at Facebook [116]. Sadowski et al. [277] describe
how formal methods are integrated in the software development worklow at Google. Godefroid reviews con-
colic testing and various forms of fuzzing, which are capable of scaling to Microsoft applications (e.g., Excel
or PowerPoint) with millions of lines of code [146]. Concrete symbolic (concolic) testing is a hybrid software
veriication technique that performs symbolic execution along concrete execution paths in an attempt to system-
atically explore the execution of a program, focusing on both speciic input values (as for traditional testing) and
symbolic representations of various alternative program paths, to achieve improved path coverage compared
to traditional testing. Scalability is a challenge due to the path explosion problem, i.e., the number of possible
paths grows signiicantly as the program’s complexity increases [280]. Fuzzing is a more light-weight testing
technique focused on quickly exploring a large input space by providing random or semi-random inputs, typically
generated by mutation-based or generation-based fuzzing, to a program to discover vulnerabilities or unexpected

14The level of conidence is usually stated as a percentage 100 × (1 − � )%, meaning that 100 × (1 − � )% of the time the actual expected value

belongs to the conidence interval [� − �/2, � + �/2], where � is the estimated value, � is the conidence, and � is the width of the conidence

interval, which is typically determined based on � and a large enough �, the number of samples obtained from � independent simulations.

Form. Asp. Comput.



Formal Methods in Industry • 9

behaviour [286]. Formal methods have also been used successfully to show the incorrectness of widely used soft-
ware such as Timsort [154], the Java LinkedList implementation [168], and implementations of the MCS mutual
exclusion locks [225] in open-source weak memory models and at Huawei [244], as well as the correctness of the
seL4 operating-system kernel [192, 193] and the CompCert C compiler [26, 55, 183]15. In the same realm, modern
programming language features such as Rust’s memory safety and Go’s concurrency have a solid foundation in
formal methods (cf., e.g., [104, 189]). Finally, formal methods have also been applied in other domains, like in
medical imaging for model checking the segmentation of glioblastoma and nevi [22, 41, 42].
A recent survey among 130 experts in formal methods (including 3 Turing Award winners16, all 4 FME

Fellowship Award winners17 and 16 CAV Award winners18) investigated the factors that limit the uptake of
formal methods in industry practice. In this survey, 71.5% of the respondents identiies that łengineers lack proper
training in formal methodsž as a limiting factor for a wider adoption of formal methods by industry [138, Section 5:
Formal Methods in Industry]. Other key limiting factors are that łacademic tools have limitations and are not
professionally maintainedž (66.9%), formal methods łare not properly integrated in the industrial design life cyclež
(66.9%) and łhave a steep learning curvež (63.8%). Related to this, 62.3% indicates that łdevelopers are reluctant to
change their way of working.ž Another survey [138] concludes that łthe current situation [of formal methods
education] is very heterogeneous across universities, and many experts call for a standardisation of university
curricula with respect to formal methods.ž
In the following sections, we describe a selection of success stories of applying formal methods in both

safety-critical (cf. Sections 3.2ś3.4) and non-safety-critical domains (cf. Sections 3.5ś3.9). Moreover, we relate the
formal methods and tools mentioned in Sections 3.2ś3.9 to the comprehensive classiications and explanations
in Section 2. We acknowledge the need for performing more empirical studies on formal methods according
to well-established guidelines [35] to establish at what point formal methods are being applied, which are the
most frequently applied techniques and tools, and related questions. From two recent surveys from the literature
involving, respectively, 216 professionals from Europe and North America using formal methods in dependable
systems engineering [144] and 328 papers on formal methods in railways [128], we know that (i) the professionals
employ formal methods mainly for assurance (e.g., proof, error removal), speciication (i.e., formal description
techniques), and inspection (e.g., error detection, bug inding), while in most of the papers formal methods are
applied in the Architecture (66%) and Detailed Design (45%) development phases; (ii) the professionals mainly
use formal methods analysis techniques for assertion checking, followed by consistency checking and model
checking, while in the papers formal veriication is the dominant analysis technique (67%), in particular model
checking (47%) and theorem proving (19.5%), whereas static analysis is hardly used (1%); (iii) the professionals
were not asked for their experiences with formal methods tools as it was left for future work łto ind out which
particular FM (and tool) is used in which domain for which particular purpose and role,ž while in the papers the
tool landscape is rather scattered with ProB (9%), NuSMV (8%), and UPPAAL (7%) among the most frequently
used ones, but not much more than Atelier B (5%), Event-B/Rodin (4%), SPIN (4%), and Simulink (4%).

3.2 Formal Methods for Railways

Railway signalling used to be done manually by observing trains and operating signals, which is error-prone and
restricts the capacity of railway transportation. Automatic signalling is obviously needed for modern railway

15The seL4 developers received the 2022 ACM Software System Award for łthe irst industrial-strength, high-performance operating system to

have been the subject of a complete, mechanically-checked proof of full functional correctness;ž the 2021 ACM Software System Award went

to łCompCert, the irst practically useful optimizing compiler targeting multiple commercial architectures that has a complete, mechanically

checked proof of its correctness.ž
16https://amturing.acm.org/byyear.cfm
17https://www.fmeurope.org/awards/
18http://i-cav.org/cav-award/

Form. Asp. Comput.

https://amturing.acm.org/byyear.cfm
https://www.fmeurope.org/awards/
http://i-cav.org/cav-award/


10 • M. H. ter Beek et al.

control systems. However, the safety of such automatic systems is crucial as a small error in signalling may
have catastrophic consequences, such as train collisions. Moreover, replacing manual railway signalling with
an automatic solution means huge investments and the extremely high standards of safety make it even more
expensive. Formal methods can be a solution both for ensuring the safety of such systems and saving costs [40,
Section 3: Cost-Beneit Analysis]. CENELEC EN 50128 is a European standard for the development of software
for use in the railway industry [122]. It highly recommends formal methods for the design and veriication of
products that need to meet the highest safety integrity levels (SIL 3 or SIL 4, i.e., with a maximum accepted
probability of dangerous failure between 10−7 and 10−9 per hour). The above mentioned cost-beneit analysis
reported, which follows EU guidelines and covers both inancial and economic analysis, is the only such analysis
applied to formal methods that we are aware of. We agree with the authors of [40] who call for łgreater attention
of the formal methods community to the quantiication of costs and beneits parameters [. . . ] since the evidence of
the beneicial efects of formal methods is mostly given instead in the literature in a qualitative way.ž In [247], the
authors evaluated (without any monetary measurements) the efect of applying the commercial formal technique
Analytical Software Design (ASD) to an industrial project, and they compared the positive results concerning
code quality (good) and productivity (high) with those of 13 similar projects that used other formal methods
(e.g., B and VDM). The above mentioned recent survey among 130 experts in formal methods also contained a
question that asked the experts to make an informal cost-beneit analysis over time [138, Section 5.3: Return
on Investment]. A small majority of 58.5% of the respondents answered that the application of formal methods
is proitable in medium and long terms; 15% answered that they are immediately proitable and 12.3% that they
are proitable in the long term only, while 2.3% answered that there is no return on investment and 11.5% had no

opinion.
From the above mentioned recent survey of the landscape of research on applications of formal methods to

the development of railway systems [128], involving 328 high-quality papers from 1989ś202019, we know that
formal methods in railways is a thriving research ield with strong industrial ties, since 143 papers were published
solely in the last ive years (44% of the total of 328 papers) and 79 papers (24%) involved industry. Well-known
success stories throughout the years concern the development and veriication of the Automatic Train Protection
(ATP) system for the RER Line A of Paris [159], the Subway Speed Control System (SSCS) of the subway of
Calcutta [108], Line 14 of the Paris Metro [117], and derivatives thereof, like line 1 or the NY Canarsie line [121],
and the driverless ParisśRoissy Airport shuttle [37], all developed with the B method. B was also used for an
industrial scale system-level analysis of Alstom’s U400 system [95], which is in operation in about 100 metro
lines worldwide. Another success story concerns the metro control system of Rio de Janeiro, developed with the
support of Simulink/Statelow [125]. Simulink20 is a model-based development tool for graphical system design,
supporting simulation, test generation and code generation. A Simulink model’s basic unit is a block diagram
such that each block represents a diferent system component and their connections represent interactions
between these components. Simulink comes with Statelow, a graphical language inspired by Harel’s hierarchical
statecharts [166], for modelling and simulating the behaviour of complex systems in the form of state machines
and low charts, and it supports model checking through Simulink Design Veriier, which is part of the Simulink
Veriication and Validation tools. Further success stories concern the veriication of the ERTMS/ETCS European
standard for railway control and management with NuSMV [85] and of Hybrid ERTMS/ETCS Level 3 with a
variety of formal methods and tools [30, 76]. In particular, in [164], the new system was modelled in B, identifying

19The survey was conducted following the guidelines for systematic mapping studies [252]. In particular, the 328 high-quality papers were

selected from an initial set of 4346 papers retrieved from scientiic databases upon the application of predeined criteria for inclusion (e.g., the

study is written in English language) and exclusion (e.g., the study does not use a formal or semi-formal method) plus a quality checklist (e.g.,

is there a clear description of the task addressed with formal methods?) used for grading the papers. All papers with an insuicient overall

quality score were excluded from the selection.
20https://nl.mathworks.com/products/simulink.html

Form. Asp. Comput.

https://nl.mathworks.com/products/simulink.html


Formal Methods in Industry • 11

over 30 issues and using the formal model as a runtime artefact for a real-life demonstration. Moreover, in [6],
the system structure of the movement authority scenario of the Chinese Train Control System Level 3 (CTCS-3)
was modelled by core constructs of the Architectural Analysis and Design Language (AADL) [111, 278], with its
extensions Behavior Language for Embedded Systems with Software (BLESS) [203] for the discrete behaviour and
Hybrid CSP [184] for the continuous behaviour, and veriied with the Hybrid Hoare Logic (HHL) Prover [295],
an interactive theorem prover based on Isabelle/HOL. Recently, the Autonomous Positioning System (APS) of
the Florence tramways was veriied with the support of the model checker UPPAAL [28]. See [126, 127, 223] for
comparisons of diferent formal methods and tools for railway system design.
Railway transportation, such as trains, metros, and trams, is one of the most environmentally friendly and

energy-eicient means of transportation. In the domain of railway control systems, a large number of research
projects that involve formal methods have been carried out during the past decades, such as RobustRail21 and
more than one hundred projects funded under the Shift2Rail initiative22, including the X2Rail series. Shift2Rail
and its successor Europe’s Rail are joint eforts of railway stakeholders and the EU to advance the railway
domain through innovative research projects involving both academia and industry, in which formal methods
are considered to be fundamental to the provision of safe and reliable technological advances in railways [33].
Notable initiatives outside the EU are the UK Rail Research and Innovation Network (UKRRIN)23 and the Chinese
State Key Laboratory of Rail Traic Control and Safety24.

Companies such as Alstom and Siemens are using formal methods, such as the B language, in the development
of their train control systems as well as for data validation [206, 212], notably using the model checker ProB within
tools like Systerel’s OVADO25 [1, 13] and the ClearSy Data Solver26, both of which are certiied T2 (i.e., tools where
a fault could lead to an error in the results of veriication or validation) for SIL 4 in accordance to the CENELEC
EN 50128 standard. Prover is another industrial leader in formal methods for railway signalling automation. They
develop software tools and services to support railway signalling design automation. Their solution covers a
formal high-level language for formal veriication and tools for developing, testing, and verifying railway control
systems, like railway interlocking systems. They apply formal veriication techniques, like theorem proving,
in their interlocking software, digital twins, and development tools for railway signalling, which have been
used in projects worldwide, like Sweden, Norway, China, France, and Canada 27. The Prover Certiier formal
veriication tool, which includes the Prover PSL model checker, is also certiied T2 for SIL 4 in accordance to
the CENELEC EN 50128 standard. Moreover, the successful application of formal methods in Prover shows that
formal veriication can cut on-site testing time by up-to 50% and detect bugs that are overlooked by traditional
testing28: łFormal Veriication providesmuch higher coverage than testing. At Prover, we always ind errors
when doing formal veriication, even on systems that have gone through regular veriicationž29

In the near future, the Railway domain is expected to contribute signiicantly to the European Green Deal by
improved digitalization and data analytics30. Challenges include the extension of formal methods and tools to
cope with AI-based systems, such as equipping veriication tools with certiicate generation, and their integration
in the CENELEC standards [279].

21http://www.robustrails.man.dtu.dk
22https://projects.shift2rail.org
23https://www.ukrrin.org.uk/
24http://en.bjtu.edu.cn/research/institute/laboratory/16583.htm
25https://www.ovado.net/
26https://www.clearsy.com/en/tools/data-solver/
27https://www.prover.com
28https://www.prover.com/categories/veriication-validation
29Daniel Fredholm from Prover Technology in his presentation Formal Veriication in the Railway Domain during FME’s łInFM: Industry talks

on Formal Methodsž series on May 16, 2024.
30https://transport.ec.europa.eu/system/iles/2021-04/2021-mobility-strategy-and-action-plan.pdf

Form. Asp. Comput.

http://www.robustrails.man.dtu.dk
https://projects.shift2rail.org
https://www.ukrrin.org.uk/
http://en.bjtu.edu.cn/research/institute/laboratory/16583.htm
https://www.ovado.net/
https://www.clearsy.com/en/tools/data-solver/
https://www.prover.com
https://www.prover.com/categories/verification-validation
https://transport.ec.europa.eu/system/files/2021-04/2021-mobility-strategy-and-action-plan.pdf


12 • M. H. ter Beek et al.

3.3 Formal Methods for Automotive

ISO 26262 is an international standard for functional safety in the automotive industry [179]. It provides guidelines
and requirements for the development of safety-critical electrical and electronic systems (E/E systems) in vehicles.
The standard is focused on ensuring the safety of E/E systems that are involved in the operation of passenger cars,
motorcycles, trucks, and buses. The standard deines a safety life-cycle that encompasses various phases, including
requirements, system, hardware, and software development. It emphasizes the identiication and assessment of
potential hazards, as well as the implementation of safety measures to mitigate risks. ISO 26262 also outlines
processes for safety management, hazard analysis, risk assessment, and veriication and validation of functional
safety, deined as the absence of unreasonable risk due to hazards caused by malfunctioning behaviour of E/E
systems31.
Compliance with ISO 26262 is typically required by regulatory bodies and is expected by customers in the

automotive industry. Adhering to the standard helps ensure that vehicles and their associated systems are
designed, developed, and produced with a focus on safety, reducing the likelihood of failures or malfunctions that
could lead to accidents or injuries. Formal methods are considered the best choice in order to handle complexity
and improve conidence in the automotive system’s correctness, and although not mandated by ISO 26262, they
are clearly encouraged and actually used, as demonstrated in the next paragraphs.

The need for advanced formal methodologies for design, development, and veriication of automotive systems
was identiied by both industry and academia. Several projects were launched, and many problems were addressed.
The systems modelling language (SysML) [180] is a general-purpose modelling language for systems engineering
applications deined as an extension to UML addressing the structuring of requirements and their veriication.
Within several EU research projects, the Architecture Description Language, a metamodel and an ontology for
representing engineering information for automotive embedded systems, called EAST-ADL32 [56], was developed.
EAST-ADL went further and applied an automotive ontology and representation aligned with AUTOSAR for the
structuring of engineering information. The EAST-ADL model is structured in abstraction levels, where each
sub-model represents the complete embedded system, at the relevant level of detail. The EAST-ADL abstraction
levels map to the abstraction levels given in ISO 26262. EU projects like ATESST, CESAR, SafeCer, MAENAD,
and MBAT all addressed the use of models and tools to automate the representation and formal veriication of
automotive systems’ requirements.
Volvo Group Trucks Technology (VGTT) in Sweden is a division of Volvo Trucks that is a world-leading

truck manufacturer, providing total transport solutions. In its Model-based Continuous Integration of Automotive

Embedded Systems [215], VGTT applies the following engineering principles in order to address their product
development and process challenges: (i) Go Virtual, to allow daily deliveries and maximize veriication conidence
while exercising dangerous and rare events, (ii) Go Rigorous, which requires the use of models, data, and formal
veriication to provide means to secure products versus needs and requirements, and allow engineering rigour
and automation, (iii) Go Multi-Method, which incorporates in the engineering worklow a multitude of tools for
the model representation (EAST-ADL, Simulink, the object-oriented, declarative modelling language Modelica33,
its Association Project Function Mockup Interface34, and the model checker UPPAAL), as well as software-centric
and physics-centric simulation (e.g., EAST-ADL/Simulink and Function Mockup Units) and formal veriication of
components’ behaviour and timing (e.g., by employing the model-checking toolset UPPAAL), (iv) Go Consistent,
to ensure that binaries and components are faithful realizations of models and code, and (v) Go Continuous to
deliver daily/weekly/monthly component versions and tests. All these methods and tools for modelling and

31https://www.iso.org/obp/ui/en/#iso:std:iso:26262:-1:ed-2:v1:en
32https://www.east-adl.info/
33https://modelica.org/
34https://fmi-standard.org/

Form. Asp. Comput.

https://www.iso.org/obp/ui/en/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.east-adl.info/
https://modelica.org/
https://fmi-standard.org/


Formal Methods in Industry • 13

veriication have been integrated or are under integration in VGTT’s ADAPT Integration Environment, leading to
development eiciency via iterative and incremental development, and assured product quality by incorporating
formal techniques, such as SAT-based requirements consistency-checking with the Z3 theorem prover [216, 217]
and model checking with the UPPAAL model checker [131, 158, 218], in the engineering worklow.
The recent rise of autonomous vehicles has brought exciting new challenges to the automotive industry to

make such vehicles safe, reliable, and trustworthy, respect legal regulations, and ready for societal acceptance.
These include dealing with uncertainties and incomplete or inaccurate information, as well as the development of
efective formal methods and tools for the veriication of AI-based systems based on transparent and explainable
components that can be certiied [219].

3.4 Formal Methods for Aerospace

Formal methods are now an expected and required part of the development processes of intelligent, autonomous,
and safety-critical air and space systems. Their use is codiied into light certiication, e.g., by the US Federal
Aviation Administration (FAA) via DO-178B [257], DO-178C [260], DO-333 [259], and DO-254 [258], and in the
EU by Regulation (EU) 2018/1139.35 International standards agencies IEEE and IEC (International Electrotechnical
Commission) maintain tens of standards for avionics involving formal methods [177, 178]. See [132] for a more
detailed discussion of regulations for formal methods in certiication of reliable autonomous systems, which
include Unmanned Aerial Systems (UAS), covering airborne vehicles ranging from toy quadcopters to military
UAS and autonomous missiles, but also driverless trains and self-driving cars.

Systems whose requirements, design, veriication, and maintenance were shaped by formal methods continue
to further the frontiers of modern aerospace engineering. For example, explicit-state model checking with
model checkers like SPIN and the software model checker Java PathFinder [292] increased the robustness of the
Small Aircraft Transportation System (SATS) [236]; proved the absence of synchronization faults in the Tactical
Separation Assurance Flight Environment (TSAFE) [52]; veriied a design-time hierarchical, concurrent spacecraft
model [224]; and analyzed the Mars Science Laboratory’s light software [156, 173]. Symbolic model checking of
temporal logic formulas [270] with model checkers like (Nu)SMV / nuXmv veriied the Traic Alert and Collision
Avoidance System (TCAS) lying on-board commercial aircraft [83]; ensured internal aircraft modes followed the
A-7E aircraft software requirements [283]; provided the basis for the Correctness, Modelling and Performability
of Aerospace Systems (COMPASS) [67]; robustiied Boeing’s AIR6110 wheel braking system [68]; and changed
NASA’s design for the NextGen automated air traic control system [139, 222, 302]. Such successes convinced
the engineers at Dassault Aviation of the feasibility of verifying Esterel programs [49], which they use for parts
of the safety-critical software of light control systems but also for mission management systems. Theorem
proving with theorem provers like KeYmaera and PVS provided many core veriication results, e.g., for full-scale,
real-life air traic control systems including KB3D pair-wise conlict detection and resolution algorithms [235],
Stratway (a modular approach to strategic conlict resolution) [160], ACCoRD (state-based conlict detection and
resolution algorithms) [237], Chorus (tactical conlict and loss of separation detection and resolution) [78], and
ACAS-X (Airborne Collision Avoidance System X) [182]. The theorem prover Isabelle/HOL [300] provided proofs
for partition scheduling of a commercial real-time operating system implemented following the ARINC 653
international aerospace industry standard [4].

35Regulation (EU) 2018/1139 of the European Parliament and of the Council of 4 July 2018 on common rules in the ield of civil aviation

and establishing a European Union Aviation Safety Agency, and amending Regulations (EC) No 2111/2005, (EC) No 1008/2008, (EU) No

996/2010, (EU) No 376/2014 and Directives 2014/30/EU and 2014/53/EU of the European Parliament and of the Council, and repealing

Regulations (EC) No 552/2004 and (EC) No 216/2008 of the European Parliament and of the Council and Council Regulation (EEC) No 3922/91:

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1139

Form. Asp. Comput.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1139


14 • M. H. ter Beek et al.

Next to these exhaustive qualitative veriication techniques, the exhaustive quantitative method of probabilistic
model checking, in particular the probabilistic model checker PRISM36 [199], proved instrumental in increasing
the robustness of ACAS-X [294]; carrying out comparative analysis of automated air traic control systems [303];
assessing the reliability, availability, and maintainability of a satellite [250]; and analyzing NASA’s SPIDER
distributed, fault-tolerant operating system [120]. We conclude with non-exhaustive formal methods. Static
analysis made possible the veriication of a large, complex software system that provides separation assurance
between multiple airplanes up to 20 minutes ahead of time [141]. Dynamic analysis, a scalable alternative to
static analysis for models with nonlinear dynamics, enabled rigorous safety-checking of the nonlinear predicates
that arise from dynamics-based predictions used in alerting logic for a state-of-the-art parallel aircraft landing
protocol [119]. Three runtime veriication engines have been designed speciically for aerospace use-cases: NASA
Langley’s Copilot [251, 253], DLR’s RTLola [31], and R2U2 [185, 273].

Advances in the scalability, adaptability, and connectivity of all of these tools and techniques have created an
ecosystem advancing the system lifecycle of robust aerospace systems through their combined use. For example,
NASA’s Lunar Gateway is currently being designed from formal requirements authored as assume-guarantee
contracts, veriied at design time and carried through the system lifecycle all the way to on-board, real-time
runtime veriication [106, 107, 186].

3.5 Formal Methods for Operating Systems

From the beginning, formal methods have been inspired by the problems arising from multi-user operating
systems, especially parallel programming and communication protocols, for which speciication languages and
automated protocol validation techniques based on state-space exploration have been developed since the 1970s,
e.g., [274, 296]. The application ield of formal methods further expanded to also encompass the veriication
of distributed algorithms, such as the atomic multicast protocol used for the DELTA-4 distributed dependable
architecture [23].

There have been many success stories of formal methods in this area. One can mention the formal veriication
of the seL4 general-purpose commercial microkernel using the Isabelle/HOL theorem prover [192, 193], the
SLAM veriication platform based on static analysis and symbolic model checking for analyzing the source code
of Microsoft Windows drivers [18ś21], Microsoft’s SAGE whitebox fuzzer, which found roughly one third of all
the bugs discovered by ile fuzzing during the development of Windows 7 [147ś150], and the Coccinelle static
analysis tool for automatically updating the Linux kernel and drivers [204, 205, 267].

3.6 Formal Methods for Cloud Security and e-Commerce

Amazon Web Services (AWS) has developed and deployed formal and automated reasoning technology for more
than a decade. AWS leadership have recently described a łGolden Agež [275] for automated reasoning (AR), with
AR Group founder Byron Cook noting:

łFormal methods is transforming how Amazon Web Services (AWS) secures the cloud. Security has
historically been a manual, high-judgement and thus un-scalable ield; automated formal reasoning
is challenging that entire structure, changing both the quality of AWS products and the cost structure
to support them. The key at AWS has been to avoid łshiny-object syndromež [99] and instead build
and apply tools that quietly but reliably change the behaviour of engineers. Many leaders at AWS
were skeptical of this type of work in 2016, but the success in areas such as cryptography, identity,
storage and virtualization has changed minds.ž

A key point is that AR builds trust with customers by allowing universal and sound veriication of properties
of AWS’ infrastructure and customers’ applications. By łuniversal,ž AWS means properties that hold for all users,

36PRISM received the ETAPS Test-of-Time Tool Award 2024.

Form. Asp. Comput.



Formal Methods in Industry • 15

all storage buckets, all networks, all compute instances, all conigurations, and so on Ð freeing the user from
having to łtestž a nearly ininite state space.

The deployment of AR within AWS covers a broad spectrum Ð from deep proofs of foundational code, through
properties of protocols and internal services, to universal properties of customer-facing applications at enormous
scale. A small selection of examples includes:

(1) At the foundational level, AWS has proven the memory- and type-safety of the irst-stage boot code of its
servers [98], giving them conidence that the code is crash-proof and resistant to code injection attacks for
all possible conigurations. The authors used the C Bounded Model Checker (CBMC) [89], but mention
that łany other bit-precise, sound, automated static analysis tool could be used.ž More recently, AWS has
produced a library, called łs2n-bignum,ž that provides primitive operations for elliptic curve ield elements
and points [163]. These operations underpin billions of cryptographic operations per day. s2n-bignum is the
irst cryptographic library that combines formal proofs of functional correctness for multiple variants of the
ARM64 and x86_64 micro-architectures, resistance to timing-based side-channel attacks, and performance
that is equal to or exceeds all other contemporary implementations. The s2n-bignum code [167] and proofs
are freely available under a permissive licence.

(2) The AWS authorization system evaluates each request to AWS against relevant access control policies to
determine if access is allowed or denied. An internal service called Zelkova [11] takes in a set of policies
and uses automated reasoning to analyze every possible request that would be allowed by those policies.
Under the hood, Zelkova translates each policy into a set of SMT constraints that are passed to a łportfoliož
of solvers, such as the theorem provers Z3, CVC4 [25] and CVC5 [24] for solving Satisiability Modulo
Theories (SMT) in a łwinner-takes-allž race. In 2019, AWS extended Zelkova to introduce łIAM Access
Analyzer,ž which removes the burden of requiring the user to write formal access control speciications.
Instead, the tool presents the user with a set of łindingsž that the user can review and mark as łintendedž
or łnot intended.ž This interaction is actually a form of formal speciication reinement, although the user
does not have to interact with the underlying formal model. By late 2022, Zelkova and its customer-facing
services were generating over 1 Billion SMT queries per day [275]37.

(3) In late 2020, AWS announced the availability of strong read-after-write consistency in the S3 storage service.
S3 operates at a currently preposterous scale, storing over 100 Trillion objects and handling over 10 Million
requests per second [293]. Strong consistency ensures that the same view of an object is available to all
readers instantly following a write operation to that object. Consistency properties were speciied and
veriied using Dafny [209], a veriication-aware programming language which uses the Z3 automated
theorem prover for discharging proof obligations. To deal with continued evolution of the system, formal
veriication activities are built into the development team’s continuous integration pipeline and run before
traditional testing [97].

3.7 Formal Methods for Hardware Design

In the design of modern circuits (e.g., processors, co-processors, systems on chip), the largest part of the efort is
dedicated to testing (which is usually called łveriicationž in this hardware domain) and łformal veriicationž
(which implies the use of formal methods). A fair estimation is that more than 50% of the efort is dedicated
to veriication (formal or not) [72, 262], which is much higher than what is typically observed in the software
industry.
The main diference between hardware and software is the impossibility to apply late patches to circuits, as

usually done to ix bugs and design mistakes in software systems (such as the famous łpatch Tuesdayž [74]).
Some degree of patching is possible for processors, e.g., by releasing updates for the irmware, or by embedding

37https://www.amazon.science/blog/a-billion-smt-queries-a-day

Form. Asp. Comput.

https://www.amazon.science/blog/a-billion-smt-queries-a-day


16 • M. H. ter Beek et al.

slow yet reliable fall-back algorithms, to be used as replacements for modern, highly optimized algorithms if
these happen to be wrong or cause run-time errors. Yet, in most cases, patching circuits after they are shipped is
nearly impossible (if these circuits are embedded in larger systems) and very expensive. For instance, the design
error in the Intel Sandy Bridge chipset cost an estimated US$ 700 million [176].

Formal veriication led tomany success stories in the hardware-design industry, e.g., for checking the correctness
of implementations of instruction sets, for checking the many communication protocols and distributed algorithms
(as modern circuits heavily rely on concurrency), for checking that code generation produces correct results (this
is known as łequivalence checkingž), for checking that asynchronous logic performs well, etc.

Theorem proving is instrumental in the design of correct circuits. For instance, the ACL2 theorem prover38 [190,
191] has been used by companies such as AMD, Arm, Centaur Technology, IBM, Intel, Oracle, and Collins
Aerospace. For example, it gave a formal proof that the security policy of the Rockwell Collins AAMP7 micro-
processor enforces a static separation kernel and is thus able to concurrently process information ranging from
unclassiied to top secret [155, 165].

Model checking also plays an important role in hardware veriication. For instance, theMur� model checker [115,
285] and its many derivatives have been helpful for checking cache-coherence and security protocols. Also, the
CADP model-checking toolbox [136] has been used by hardware companies such as Bull, CEA/Leti, STMicroelec-
tronics, and Tiempo in numerous case studies (cf., e.g., [60, 101, 196, 202, 221, 301]).

CAD tool vendors (e.g., Cadence and Synopsis) provide tools that, to a certain extent, embody formal methods
under the hood. High-level languages such as VHDL or SystemVerilog are used to describe the components, while
languages based on temporal logic, such as SVA or PSL, are used to describe the expected properties. Further
dissemination of formal methods in the hardware industry is currently limited by the insuicient number of
experts, an issue that is addressed in various ways: in-house training by experienced engineers, tutorials given
by CAD tool vendors, andÐmore recentlyÐspeciic training delivered by small, dedicated service companies39.
In [81], the speciic shortage of veriication engineers in the hardware design domain of microelectronics is
addressed, emphasizing the importance of teaching the łveriication mindset,ž accelerating the learning curve for
veriication techniques, and incorporating new paradigms like AI into the veriication process.

3.8 Formal Methods for Lithography Manufacturing

ASML40 is one of the world’s leading manufacturers of chip-making equipment, such as lithography machines
which drive Moore’s Law [229] forward. Lithography machines are complex cyber-physical systems which use
light to print tiny patterns on silicon; a fundamental step in mass producing microchips.
ASML’s lithography machines aim to print microchip patterns as accurately and consistently as possible,

even in high-volume manufacturing environments. Reliable chip manufacturing requires extremely tailored
processes for each customer, so any unexpected change Ð even an improvement Ð comes at a cost. To make
ASML’s lithography systems run reliably and consistently ASML needs software that sends unambiguous
instructions in every situation to the carefully engineered hardware. One way that ASML ensures this is by
formally verifying (model checking) the speciied machine behaviour and automatically generating correct and
semantically equivalent code from those models [54].
To this aim, ASML uses the Coco platform 41, which integrates the imperative programming language Coco,

designed for (a)synchronous event-driven software systems based on state machines, with the model checker
Cosmos, designed to formally verify Coco programs (e.g., absence of deadlocks, livelocks, and race conditions,

38The BoyerśMoore theorem prover, a precursor to ACL2, received the 2005 ACM Software System Award.
39Cf., e.g., https://aedvices.com
40https://asml.com
41https://cocotec.io/

Form. Asp. Comput.

https://aedvices.com
https://asml.com
https://cocotec.io/


Formal Methods in Industry • 17

responsiveness, etc.), and is capable of generating executable code. Cosmos uses a customized process model
with respect to the FDR reinement model checker for CSP that can be resolved without state-space explosion.

ASML applies this development methodology to systems ranging from high-level supervisory machine control
components to low-level drivers, by expressing behaviour in many asynchronously communicating (via formally
deined interfaces) state machines. Some of these state machines have billions of states (relecting the complexity
of the machine’s behaviour), but even in much smaller ones there are inherent risks of issues like deadlocks
and race conditions. ASML’s experience is that humans have diiculty overseeing all parallel behaviour of even
the smaller state machines. This is a potential risk to consistent machine operation and might even result in
downtime. Formal veriication helps ASML engineers to uncover many of these notoriously hard-to-ind issues
in an early development phase and has therefore become a critical and cost-efective design aid for ASML.
Formally verifying all desired (e.g., end-to-end) properties is currently infeasible due to various reasons,

including the size and complexity of ASML’s systems. Therefore, ASML incorporates runtime veriication
techniques in the testing process, which focus on aspects not already covered by formal veriication.
The more code that is generated from formally veriied models, the less chance of customers encountering

bugs in ASML’s software. Although that rarely happens, ASML wants it to never happen. By formally verifying
more behaviour and more properties, ASML can get even closer to that goal.

3.9 Formal Testing of Mobile Devices from Natural Language Requirements and Other Stories from

Brazil

Motorola Mobility, a Lenovo Company, has a partnership of over two decades with the Federal University of
Pernambuco, in Brazil, to conceive a sound, automated, and industrial-scale testing strategy that can be applied
in the mobile device domain. In the period from November 2022 to November 2023, Motorola was ranked second
in the mobile vendor market share in Brazil42 and eighth worldwide43. This is clearly not a safety-critical domain
but rather a mission-critical domain, in the sense that escaped defects can severely afect the reputation of
the company and cause signiicant inancial losses. The overall strategy was implemented in a tool named
TaRGeT [129]. It has been used by some Motorola teams that reported gains between 40% and 50% in productivity
related to the overall testing process [130, 242]. Prior to this cooperation, testing was mainly a manual task in
Motorola. Currently, Motorola instead adopts a formal, model-based, testing approach based on hidden formal

methods.
The input to the developed testing strategy [243] is a text document written in a Controlled Natural Language

(CNL), suitable for writing requirements, use cases and test cases, but with formal syntax and semantics. Beneitting
from natural language processing techniques, a formal model (in CSP [171, 269]) is automatically derived from
these requirements. Using the CSP model checker FDR [143], test cases are automatically generated as CSP traces
and then translated back into CNL (for manual execution) or into scripts for several automation frameworks,
for automated execution. The deined formal conformance relation is cspio, a CSP-based conformance relation
distinguishing input and output based on the input/output conformance (ioco) implementation relation for
input/output labelled transition systems (IOLTS) [53], formalized in the traces model of CSP. The reason for
adopting an ioco-based relation is that ioco captures both partial speciications (important in the context of
testing mobile devices, as the testing is on a feature-by-feature basis) and allows reduction of nondeterminism,
also useful for allowing implementation choices. Many variants of ioco have been proposed in the literature
(e.g., uioco, mioco, wioco, and sioco) to deal with under-speciication, time, data, and so on. However, while
model-based (conformance) testing has been studied intensively, today only a few tools based on variants of the
ioco conformance relation are still maintained actively, such as TESTOR, implemented on top of CADP [220].

42https://gs.statcounter.com/vendor-market-share/mobile/brazil
43https://gs.statcounter.com/vendor-market-share/mobile/worldwide

Form. Asp. Comput.

https://gs.statcounter.com/vendor-market-share/mobile/brazil
https://gs.statcounter.com/vendor-market-share/mobile/worldwide


18 • M. H. ter Beek et al.

Typically, the underlying formal models of test case generation approaches are IOLTS or other operational
models. The main reason to use CSP as a semantic foundation for the project was that CSP, being a process
algebra, ofers a variety of process operators, semantic models, and process reinement notions. This provides
a rich infrastructure to support the characterization of test generation at a very high level of abstraction, and,
particularly, agnostic to algorithms that rely on the model structure. Test generation is accomplished using
reinement assertions in the CSP traces model. The initial generation strategy considered only control low
behaviour, but, subsequently, it was straightforward to evolve it, in a conservative way, to incorporate data and
time as orthogonal aspects.. Concerning the time to generate the test cases, a tool like TaRGeT is incomparably
faster than designing test cases manually. Nevertheless, there are other activities in the process, beyond test
design, that need to be performed both in case the tests are designed manually and when they are generated
automatically. Particularly, the inspection phase takes a signiicant amount of time.
Currently, more elaborate frameworks are being developed with the aim of covering the full life cycle of test

generation and execution. An exciting area for future investigation is the use of robotic arms to automate test
execution that needs human interaction, based on AI, as well as voice, image, and natural language processing
techniques.
Concerning other initiatives on the application of formal methods in Brazil, we single out a cooperation

with Embraer, a Brazilian commercial aircraft company that is currently one of the largest in the world. This
partnership has involved both formal veriication using Simulink and the probabilistic model checker PRISM [151]
and rigorous approaches to software testing [79], using so-called expanded data-low reactive systems encoded
as TIOTS, an alternative timed model based on IOLTS and ioco. Another successful cooperation was the one
with Bang & Olufsen (B & O) in the context of the EU project COMPASS. The particular application was a
veriied design of a leadership election protocol that ensures the absence of deadlock in the (possibly dynamic)
coniguration of a network of B & O audio and video equipments [8], using CSP and the model checker FDR.

4 Educating for Formal Methods in Industry

It is our irm belief that formal methods, from formal speciication to reinement and veriication, constitute a
core knowledge area in Computer Science with widespread relevance in many of today’s innovative applications,
like reliable autonomous vehicles and (robotic) systems, in a society that increasingly relies on software. Yet
in most of today’s Computer Science curricula, discrete mathematics and logic courses are often perceived
by Computer Science students as early challenges in their education, apparently disconnected from modern
programming languages. łA knowledge area directly focused on formal methods can help contextualize discrete
mathematics courses for students, and can demonstrate why such courses are taught so early as a starting
foundation for a solid computer science educationž [70].

Formal methods do not appear in CS2023, the ACM/IEEE-CS/AAAI Computer Science Curricula44 [197], to the
extent that relects their pivotal role in Computer Science and the beneits that formal methods education can
bring to industry. CS2023 encompasses 17 knowledge areas45. In [34, 70, 118], it is argumented that eight of them
are related to formal methods. Here we list these areas and provide suggestions for what to teach in relation with
formal methods:

Algorithmic Foundations Teach to reason (at least informally) about the correctness of the classical algo-
rithms (e.g., a bug was found in the TimSort sorting algorithm of the Java standard library using formal
methods [153]).

44https://csed.acm.org/
45https://csed.acm.org/knowledge-areas/

Form. Asp. Comput.

https://csed.acm.org/
https://csed.acm.org/knowledge-areas/


Formal Methods in Industry • 19

Architecture and Organization Teach to validate the accuracy of hardware designs and that the interface
behaviour of (software and hardware) components in architectural designs adhere to their speciications
(e.g., by verifying security requirements in hardware security architectures [124]).

Artiicial Intelligence Teach to capture the assumptions of the designs of deep neural networks as used in
large language models as well as their veriication or counterexample-based retraining (e.g., with model
checking or interactive theorem proving [71]).

Parallel and Distributed Computing Teach how to understand and justify the correctness of systems
in the presence of the topics addressed in this knowledge area (e.g., program parallelisation, atomicity,
concurrency, progress, deadlocks, faults, safety, and liveness), which in essence lists formal methods as a
prerequisite (viz., logic, discrete mathematics, and software engineering foundations).

Security Teach how to understand vulnerabilities of, and threats against, software systems, algorithms and
protocols, ensuring resilience against attacks and providing assurance of security properties (including
concepts like privacy, cryptography, and encryption properties [96]).

Software Development Fundamentals Teach to reason (at least informally) about the correctness of pro-
grams (e.g., by specifying requirements and justifying why these are met by the proposed program [230])
and to understand how algorithms impact the performance of programs.

Databases Teach description logic for reasoning on data management (e.g., expressing ontologies, integrating
multiple data sources, and expressing and evaluating queries [59]).

Software Engineering Teach formal methods, which is actually recommended in this knowledge area
(deined as łmathematically rigorous mechanisms to apply to software, from speciication to veriicationž)
as a non-core knowledge unit with suggested learning outcomes like łdescribe the role formal speciication
and analysis techniques can play in the development of complex software and compare their use as
validation and veriication techniques with testingž and łapply formal speciication and analysis techniques
to software designs and programs with low complexity,ž while testing is the primary validation technique
in other modules. As mentioned in Section 2.1, formal methods and testing are not mutually exclusive.

We believe in the importance of formal methods, and in particular of the capacity to abstract and mathematical
reasoning that are taught as part of any formal methods course, as fundamental Computer Science skills that
industry would proit fromwhen hiring computer scientists. This is highly relevant, since we have seen that formal
methods are becoming widely applied in industry. In Section 3, we have provided evidence of formal-methods
applications in industry through papers and testimonies from representatives who, either directly or indirectly, use
or have used formal methods in their industrial project endeavours. Importantly, they are spread geographically,
including Europe, Asia, North and South America, and involve well-known worldwide companies such as Alstom,
Amazon, ASML, Bang & Olufsen, Boeing, Collins Aerospace, Embraer, Facebook, Google, Huawei, IBM, Intel,
Microsoft, Motorola, Oracle, Siemens, and Volvo. The current ofering of formal methods in Computer Science
education is inadequate because every Computer Science graduate needs to be educated in formal methods, since
they can support algorithmic problem solving, model-driven engineering, requirements engineering, security,
software architecture, software product lines, and many more areas of Computer Science, and they are applicable
in numerous industrial domains, not limited to safety-critical applications.
This is conirmed by the aforementioned recent survey among 130 experts in formal methods, which also

contained ive questions on formal methods in education [138, Section 6: Formal Methods in Education]. The
irst two questions addressed the course level and the level of importance, while further questions concerned the
content of such courses. In particular, the irst question asked the experts to indicate the most suitable place for
formal methods in an ideal teaching curriculum:When and where should formal methods be taught? A convincing
79.2% responded łin bachelor courses at the university.ž The second question asked the experts about the situation
of formal methods in Computer Science education: What is your opinion on the level of importance currently

Form. Asp. Comput.



20 • M. H. ter Beek et al.

attributed to teaching of formal methods at universities? Exactly 50% responded łnot enough attentionž and
31.5% responded łsuicient attention, but scattered all over.ž These results indicate a consensus about the essential
role of education to give the next generations of students a suicient background and practical experience in
formal methods. This is of paramount importance because in the same survey, 71.5% of the respondents identiied
as the single most important limiting factor for a wider adoption of formal methods by industry the fact that
łengineers lack proper training in formal methodsž [138, Section 5: Formal Methods in Industry]. This conclusion
is shared by a recent white paper [82], which advocates łthe inclusion of a compulsory formal methods course in
Computer Science and software engineering curriculaž based on the observation that łthere is a lack of Computer
Science graduates who are qualiied to apply formal methods in industry,ž and by a recent textbook [268] on
formal methods in software engineering, which claims that łin computer science and software engineering
education, Formal Methods usually play a minor role only.ž In the context of safety-critical and mission-critical
applications, a very recent paper recognizes łan urgent need to emphasize and integrate Formal Methods into
the undergraduate curriculum in Computer Science in the United States,ž since łthe lack of a well-structured
exposure to formal methods is a serious shortcoming in our computing curriculaž [261]. The authors also provide
several concrete suggestions for introducing the concepts and use of formal methods into existing Computer
Science curricula (e.g., Data Structures, Logic circuit design, Concepts of programming languages, Software
Engineering). łWe cannot expect graduates to become experts in program veriication as professionals if they
never encountered the ideas as students.ž The authors of [105] propose to approach formal methods already in
basic education (i.e., primary and secondary education) through ive fundamental notions (viz., speciication,
formalization, modelling, veriication, and reasoning) and they report on their experience in doing so (by means
of gamiication of transformation rules of typed graph grammars using Pac-Man).

Support for teachers is available, for instance through recent textbooks on formalmethods [43, 175, 240, 246, 268]
and advanced lectures on formal methods [44ś48, 263], but also via Formal Methods Europe (FME)46 and the
ERCIM working group on Formal Methods for Industrial Critical Systems (FMICS)47.

5 Conclusion

We have demonstrated that formal methods are important to quite a number of industry segments, not limited
to safety-critical domains, and we have made a case for the inclusion of formal methods as a separate topic in
Computer Science education. This strengthens the evidence put forward in [70] for claiming that formal methods
should be taught as a separate topic in undergraduate curricula, not only because of their importance in industry
but also because of the discipline they instil in students as they learn to develop systems through abstraction and
mathematical reasoning, as demonstrated in [118, 261]. Moreover, we have shown that this can be done without
displacing the other łengineeringž aspects of Computer Science already widely accepted as essential. On the
contrary, we have shown that formal methods have the potential to support and strengthen at least eight of the
17 knowledge areas of CS2023.

The formal methods community recently received support from a rather unexpected source. The White House
advocates the use of formal methods over testing for demonstrating the correctness of software and considers it
vital to make formal methods widely accessible to accelerate broad adoption [297, Part II: Securing the Building
Blocks of CyberspaceÐFormal Methods]: łGiven the complexities of code, testing is a necessary but insuicient
step in the development process to fully reduce vulnerabilities at scale. If correctness is deined as the ability
of a piece of software to meet a speciic security requirement, then it is possible to demonstrate correctness
using mathematical techniques called formal methods. These techniques, often used to prove a range of software
outcomes, can also be used in a cybersecurity context and are viable even in complex environments like space.

46https://fmeurope.org/
47https://fmics.inria.fr/

Form. Asp. Comput.

https://fmeurope.org/
https://fmics.inria.fr/


Formal Methods in Industry • 21

While formal methods have been studied for decades, their deployment remains limited; further innovation in
approaches to make formal methods widely accessible is vital to accelerate broad adoption. Doing so enables
formal methods to serve as another powerful tool to give software developers greater assurance that entire classes
of vulnerabilities, even beyond memory safety bugs, are absent.ž This report highlights static analysis and model

checkers as speciic examples of types of formal methods.
To conclude, creating correct software is an engineering problem and software development should therefore

be an engineering discipline. Mastering the complexity of software systems is a formidable intellectual challenge
and Computer Science graduates need to understand the powerful formal methods and tools that are available.
Then they can choose the right technique and tool for each task and with suitable humility deserve the title of
Software Engineer.

Acknowledgments

Sadly, our co-author Rance Cleaveland passed away unexpectedly on March 27, 2024, during the revision of this
paper. Rance has written most of the Introduction and he was very passionate about this paper:

łI wanted to, on the one hand, give a sense of the history of formal methods but also tie the rest of the paper
together. I also wanted to make a pedagogical point, which I don’t see right now in the paper: that students who
learn formal methods are better developers, because they learn to think about correctness while they are building
systems.ž
łAs to whether the point that FM is only for safety-critical system comes out in the rest of the paper, I

would say the safety-critical aspects still seem to dominate a bit, although other industrial applications also are
apparent. However, having said that, I think the ACM CS curricula committee’s position is, frankly, silly. There
are lots of things we teach in CS curricula that don’t have łbroad industrial relevancež: functional programming,
computer architecture / organization, O(-) notation, etc. And yet these topics are not controversial, because there
is an agreement that students who learn these topics are better computer scientists. Even if FM is *only* for
safety-critical systems, there is a great case to make for its inclusion in CS curricula.ž
We honor Rance with this paper and acknowledge his seminal contributions to formal methods and con-

currency [284], in particular the development and application of process-algebraic modelling and veriication
techniques and tools, like the Concurrency Workbenches [91ś93].
Several domain experts provided us with useful information or feedback. June Andronick from Proofcraft

(Australia) checked the references to the formal veriication of the seL4 general-purpose commercial microkernel.
Gunnar Smith from Prover Technology (Sweden) provided many meaningful experiences from an engineer’s
perspective and successful stories of Prover using formal methods. Finally, we thank Manfred Broy and the four
anonymous reviewers for their valuable comments on earlier versions of this paper.

References

[1] Robert Abo and Laurent Voisin. 2013. Formal Implementation of Data Validation for Railway Safety-Related Systems with OVADO.
In Revised Selected Papers of the SEFM 2013 Collocated Workshops: BEAT2, WS-FMDS, FM-RAIL-Bok, MoKMaSD, and OpenCert (LNCS,

Vol. 8368), Steve Counsell and Manuel Núñez (Eds.). Springer, Germany, 221ś236. https://doi.org/10.1007/978-3-319-05032-4_17
[2] Jean-Raymond Abrial. 1996. The B-Book: Assigning Programs to Meanings. Cambridge University Press, UK. https://doi.org/10.1017/

CBO9780511624162
[3] Jean-Raymond Abrial. 2010. Modeling in Event-B: System and Software Engineering. Cambridge University Press, UK. https:

//doi.org/10.1017/CBO9781139195881
[4] Aeronautical Radio Inc. (ARINC) Airlines Electronic Engineering Committee. 2015. ARINC 653: Avionics Application Software Standard

Interface, Part 1 Ð Required Services. https://www.sae.org/standards/content/arinc653p1-4/
[5] Gul Agha and Karl Palmskog. 2018. A Survey of Statistical Model Checking. ACM Trans. Model. Comput. Simul. 28, 1 (2018), 6:1ś6:39.

https://doi.org/10.1145/3158668
[6] Ehsan Ahmad, Yunwei Dong, Brian R. Larson, Jidong Lü, Tao Tang, and Naijun Zhan. 2015. Behavior modeling and veriication

of movement authority scenario of Chinese Train Control System using AADL. Sci. China Inf. Sci. 58, 11 (2015), 1ś20. https:

Form. Asp. Comput.

https://doi.org/10.1007/978-3-319-05032-4_17
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1017/CBO9781139195881
https://www.sae.org/standards/content/arinc653p1-4/
https://doi.org/10.1145/3158668
https://doi.org/10.1007/s11432-015-5346-2
https://doi.org/10.1007/s11432-015-5346-2


22 • M. H. ter Beek et al.

//doi.org/10.1007/s11432-015-5346-2
[7] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and Simão Melo de Sousa. 2011. An Overview of Formal Methods

Tools and Techniques. In Rigorous Software Development: An Introduction to Program Veriication. Springer, Germany, 15ś44. https:
//doi.org/10.1007/978-0-85729-018-2_2

[8] Pedro R.G. Antonino, Marcel Medeiros Oliveira, Augusto C.A. Sampaio, Klaus E. Kristensen, and Jeremy W. Bryans. 2014. Leadership
Election: An Industrial SoS Application of Compositional Deadlock Veriication. In Proceedings of the 6th International NASA Formal

Methods Symposium (NFM’14) (LNCS, Vol. 8430), Julia M. Badger and Kristin Y. Rozier (Eds.). Springer, Germany, 31ś45. https:
//doi.org/10.1007/978-3-319-06200-6_3

[9] Muhammad Atif and Jan Friso Groote. 2023. Understanding Behaviour of Distributed Systems Using mCRL2. Studies in Systems, Decision
and Control, Vol. 458. Springer, Germany. https://doi.org/10.1007/978-3-031-23008-0

[10] Ralph-Johan R. Back. 1980. Correctness Preserving Program Reinements: Proof Theory and Applications. Mathematical Centre Tracts,
Vol. 131. Mathematisch Centrum, The Netherlands.

[11] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek, Kasper Sùe Luckow, Neha Rungta, Oksana Tkachuk,
and Carsten Varming. 2018. Semantic-based Automated Reasoning for AWS Access Policies using SMT. In Proceedings of the 18th

Conference on Formal Methods in Computer-Aided Design (FMCAD’18), Nikolaj S. Bjùrner and Arie Gurinkel (Eds.). IEEE, USA, 1ś9.
https://doi.org/10.23919/FMCAD.2018.8602994

[12] John Backes, Pauline Bolignano, Byron Cook, Andrew Gacek, Kasper Sùe Luckow, Neha Rungta, Martin Schäf, Cole Schlesinger,
Rima Tanash, Carsten Varming, and Michael W. Whalen. 2019. One-Click Formal Methods. IEEE Softw. 36, 6 (2019), 61ś65. https:
//doi.org/10.1109/MS.2019.2930609

[13] Frédéric Badeau, Julien Chappelin, and Joris Lamare. 2022. Generating and Verifying Coniguration Data with OVADO. In Proceedings of

the 4th International Conference on Reliability, Safety, and Security of Railway Systems: Modelling, Analysis, Veriication, and Certiication

(RSSRail’22) (LNCS, Vol. 13294), Simon Collart-Dutilleul, Anne E. Haxthausen, and Thierry Lecomte (Eds.). Springer, Germany, 143ś148.
https://doi.org/10.1007/978-3-031-05814-1_10

[14] Tom Badgett, Corey Sandler, and Glenford J. Myers. 2015. The Art of Software Testing. Wiley, UK. https://www.wiley.com/en-
gb/The+Art+of+Software+Testing%2C+3rd+Edition-p-x000565567

[15] Jos C. M. Baeten and W. Peter Weijland. 1990. Process Algebra. Cambridge Tracts in Theoretical Computer Science, Vol. 18. Cambridge
University Press, UK. https://doi.org/10.1017/CBO9780511624193

[16] Christel Baier, Luca de Alfaro, Vojtech Forejt, and Marta Kwiatkowska. 2018. Model Checking Probabilistic Systems. In Handbook of

Model Checking, Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Springer, Germany, 963ś999.
https://doi.org/10.1007/978-3-319-10575-8_28

[17] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT Press, USA. https://mitpress.mit.edu/9780262026499/
principles-of-model-checking/

[18] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin. 2010. SLAM2: Static Driver Veriication with Under 4% False Alarms.
In Proceedings of the 10th International Conference on Formal Methods in Computer-Aided Design (FMCAD’10), Roderick Bloem and
Natasha Sharygina (Eds.). IEEE, USA, 35ś42. https://ieeexplore.ieee.org/document/5770931/

[19] Thomas Ball, Ella Bounimova, Vladimir Levin, Rahul Kumar, and Jakob Lichtenberg. 2010. The Static Driver Veriier Research Platform.
In Proceedings of the 22nd International Conference on Computer Aided Veriication (CAV’10) (LNCS, Vol. 6174), Tayssir Touili, Byron
Cook, and Paul B. Jackson (Eds.). Springer, Germany, 119ś122. https://doi.org/10.1007/978-3-642-14295-6_11

[20] Thomas Ball, Sagar Chaki, and Sriram K. Rajamani. 2001. Parameterized Veriication of Multithreaded Software Libraries. In Proceedings

of the 7th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’01) (LNCS, Vol. 2031),
Tiziana Margaria and Wang Yi (Eds.). Springer, Germany, 158ś173. https://doi.org/10.1007/3-540-45319-9_12

[21] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. 2011. A Decade of Software Model Checking with SLAM. Commun. ACM 54, 7
(2011), 68ś76. https://doi.org/10.1145/1965724.1965743

[22] Fabrizio Banci Buonamici, Gina Belmonte, Vincenzo Ciancia, Diego Latella, and Mieke Massink. 2020. Spatial logics and model checking
for medical imaging. Int. J. Softw. Tools Technol. Transf. 22, 2 (2020), 195ś217. https://doi.org/10.1007/s10009-019-00511-9

[23] Mário Baptista, Susanne Graf, Jean-Luc Richier, Luís E. T. Rodrigues, Carlos Rodriguez, Paulo Veríssimo, and Jacques Voiron. 1991.
Formal Speciication and Veriication of a Network Independent Atomic Multicast Protocol. In Proceedings of the 3rd IFIP TC6/WG6.1

International Conference on Formal Description Techniques for Distributed Systems and Communication Protocols (FORTE’90), Juan
Quemada, José A. Mañas, and Enrique Vázquez (Eds.). North-Holland, The Netherlands, 345ś352.

[24] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir
Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar.
2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Proceedings of the 28th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’22) (LNCS, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, Germany,
415ś442. https://doi.org/10.1007/978-3-030-99524-9_24

Form. Asp. Comput.

https://doi.org/10.1007/s11432-015-5346-2
https://doi.org/10.1007/s11432-015-5346-2
https://doi.org/10.1007/978-0-85729-018-2_2
https://doi.org/10.1007/978-0-85729-018-2_2
https://doi.org/10.1007/978-3-319-06200-6_3
https://doi.org/10.1007/978-3-319-06200-6_3
https://doi.org/10.1007/978-3-031-23008-0
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1109/MS.2019.2930609
https://doi.org/10.1109/MS.2019.2930609
https://doi.org/10.1007/978-3-031-05814-1_10
https://www.wiley.com/en-gb/The+Art+of+Software+Testing%2C+3rd+Edition-p-x000565567
https://www.wiley.com/en-gb/The+Art+of+Software+Testing%2C+3rd+Edition-p-x000565567
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1007/978-3-319-10575-8_28
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://ieeexplore.ieee.org/document/5770931/
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/3-540-45319-9_12
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1007/978-3-030-99524-9_24


Formal Methods in Industry • 23

[25] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare
Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference on Computer Aided Veriication (CAV’11) (LNCS, Vol. 6806),
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, Germany, 171ś177. https://doi.org/10.1007/978-3-642-22110-1_14

[26] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu. 2020. Formal veriication
of a constant-time preserving C compiler. Proc. ACM Program. Lang. 4, POPL (2020), 7:1ś7:30. https://doi.org/10.1145/3371075

[27] Ezio Bartocci and Yliès Falcone (Eds.). 2018. Lectures on Runtime Veriication: Introductory and Advanced Topics. LNCS, Vol. 10457.
Springer, Germany. https://doi.org/10.1007/978-3-319-75632-5

[28] Davide Basile, Alessandro Fantechi, Luigi Rucher, and Gianluca Mandò. 2021. Analysing an autonomous tramway positioning system
with the Uppaal Statistical Model Checker. Form. Asp. Comput. 33, 6 (2021), 957ś987. https://doi.org/10.1007/s00165-021-00556-1

[29] Davide Basile, Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, Franco Mazzanti, Andrea Piattino, Daniele Trentini, and
Alessio Ferrari. 2018. On the Industrial Uptake of Formal Methods in the Railway Domain. In Proceedings of the 14th International

Conference on Integrated Formal Methods (iFM’18) (LNCS, Vol. 11023), Carlo A. Furia and Kirsten Winter (Eds.). Springer, Germany,
20ś29. https://doi.org/10.1007/978-3-319-98938-9_2

[30] Davide Basile, Maurice H. ter Beek, Alessio Ferrari, and Axel Legay. 2022. Exploring the ERTMS/ETCS full moving block speciication:
An experience with formal methods. Int. J. Softw. Tools Technol. Transf. 24, 3 (2022), 351ś370. https://doi.org/10.1007/s10009-022-00653-3

[31] Jan Baumeister, Bernd Finkbeiner, Sebastian Schirmer, Maximilian Schwenger, and Christoph Torens. 2020. RTLola Cleared for Take-Of:
Monitoring Autonomous Aircraft. In Proceedings of the 32nd International Conference on Computer Aided Veriication (CAV’20) (LNCS,

Vol. 12225), Shuvendu K. Lahiri and Chao Wang (Eds.). Springer, Germany, 28ś39. https://doi.org/10.1007/978-3-030-53291-8_3
[32] Maurice H. ter Beek. 2024. Formal Methods and Tools Applied in the Railway Domain. In Proceedings of the 10th International Conference

on Rigorous State Based Methods (ABZ’24) (LNCS, Vol. 14759), Silvia Bonfanti, Angelo Gargantini, Michael Leuschel, Elvinia Riccobene,
and Patrizia Scandurra (Eds.). Springer, Germany, 3ś21. https://doi.org/10.1007/978-3-031-63790-2_1

[33] Maurice H. ter Beek, Arne Borälv, Alessandro Fantechi, Alessio Ferrari, Stefania Gnesi, Christer Löfving, and Franco Mazzanti. 2019.
Adopting Formal Methods in an Industrial Setting: The Railways Case. In Proceedings of the 3rd World Congress on Formal Methods:

The Next 30 Years (FM’19) (LNCS, Vol. 11800), Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira (Eds.). Springer, Germany,
762ś772. https://doi.org/10.1007/978-3-030-30942-8_46

[34] Maurice H. ter Beek, Manfred Broy, and Brijesh Dongol. 2024. CS2023: The Role of Formal Methods in Computer Science Education.
ACM InRoads (2024).

[35] Maurice H. ter Beek and Alessio Ferrari. 2022. Empirical Formal Methods: Guidelines for Performing Empirical Studies on Formal
Methods. Softw. 1, 4 (2022), 381ś416. https://doi.org/10.3390/software1040017

[36] Maurice H. ter Beek, Stefania Gnesi, and Alexander Knapp. 2018. Formal methods for transport systems. Int. J. Softw. Tools Technol.
Transf. 20, 3 (2018), 355ś358. https://doi.org/10.1007/s10009-018-0487-4

[37] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. 1999. Météor: A Successful Application of B in a Large Project. In
Proceedings of the 1st World Congress on Formal Methods in the Development of Computing Systems (FM’99) (LNCS, Vol. 1708), Jeannette M.
Wing, Jim Woodcock, and Jim Davies (Eds.). Springer, Germany, 369ś387. https://doi.org/10.1007/3-540-48119-2_22

[38] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime. 2007. UPPAAL-Tiga: Time for
Playing Games!. In Proceedings of the 19th International Conference on Computer Aided Veriication (CAV’07) (LNCS, Vol. 4590), Werner
Damm and Holger Hermanns (Eds.). Springer, Germany, 121ś125. https://doi.org/10.1007/978-3-540-73368-3_14

[39] Gerd Behrmann, Alexandre David, Kim G. Larsen, John Håkansson, Paul Pettersson, Wang Yi, and Martijn Hendriks. 2006. UPPAAL
4.0. In Proceedings of the 3rd International Conference on the Quantitative Evaluation of Systems (QEST’06). IEEE, USA, 125ś126.
https://doi.org/10.1109/QEST.2006.59

[40] Dimitri Belli, Alessandro Fantechi, Stefania Gnesi, Laura Masullo, Frando Mazzanti, Lisa Quadrini, Daniele Trentini, and Carlo Vaghi.
2023. The 4SECURail Case Study on Rigorous Standard Interface Speciications. In Proceedings of the 28th International Conference

on Formal Methods for Industrial Critical Systems (FMICS’23) (LNCS, Vol. 14290), Alessandro Cimatti and Laura Titolo (Eds.). Springer,
Germany, 22ś39. https://doi.org/10.1007/978-3-031-43681-9_2

[41] Gina Belmonte, Giovanna Broccia, Vincenzo Ciancia, Diego Latella, and Mieke Massink. 2021. Feasibility of Spatial Model Checking
for Nevus Segmentation. In Proceedings of the 9th IEEE/ACM International Conference on Formal Methods in Software Engineering

(FormaliSE’21). IEEE, USA, 1ś12. https://doi.org/10.1109/FormaliSE52586.2021.00007
[42] Gina Belmonte, Vincenzo Ciancia, Diego Latella, Mieke Massink, Michelangelo Biondi, Gianmarco De Otto, Valerio Nardone, Giovanni

Rubino, Eleonora Vanzi, and Fabrizio Banci Buonamici. 2017. A topological method for automatic segmentation of glioblastoma in
MR FLAIR for radiotherapy. Magn. Reson. Mater. Phys. Biol. Med. 30, Suppl 1 (2017), S437śS438. https://doi.org/10.1007/s10334-017-
0634-z Proceedings of the 34th Annual Scientiic Meeting of the European Society for Magnetic Resonance in Medicine and Biology
(ESMRMB’17).

[43] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. 2017. Formal Methods for Discrete-Time Dynamical Systems. Springer, Germany.
https://doi.org/10.1007/978-3-319-50763-7

Form. Asp. Comput.

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/3371075
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/s00165-021-00556-1
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/s10009-022-00653-3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-031-63790-2_1
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.3390/software1040017
https://doi.org/10.1007/s10009-018-0487-4
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-3-031-43681-9_2
https://doi.org/10.1109/FormaliSE52586.2021.00007
https://doi.org/10.1007/s10334-017-0634-z
https://doi.org/10.1007/s10334-017-0634-z
https://doi.org/10.1007/978-3-319-50763-7


24 • M. H. ter Beek et al.

[44] Marco Bernardo and Alessandro Cimatti (Eds.). 2006. Formal Methods for Hardware Veriication: Advanced Lectures of the 6th International

School on Formal Methods for the Design of Computer, Communication, and Software Systems (SFM’06). LNCS, Vol. 3965. Springer,
Germany. https://doi.org/10.1007/11757283

[45] Marco Bernardo, Vittorio Cortellessa, and Alfonso Pierantonio (Eds.). 2012. Formal Methods for Executable Software Models: Advanced

Lectures of the 12th International School on Formal Methods for the Design of Computer, Communication, and Software Systems (SFM’12).
LNCS, Vol. 7320. Springer, Germany. https://doi.org/10.1007/978-3-642-30982-3

[46] Marco Bernardo, Ferruccio Damiani, Reiner Hähnle, Einar Broch Johnsen, and Ina Schaefer (Eds.). 2014. Formal Methods for Executable

Software Models: Advanced Lectures of the 14th International School on Formal Methods for the Design of Computer, Communication, and

Software Systems (SFM’14). LNCS, Vol. 8483. Springer, Germany. https://doi.org/10.1007/978-3-319-07317-0
[47] Marco Bernardo and Jane Hillston (Eds.). 2007. Formal Methods for Performance Evaluation: Advanced Lectures of the 7th International

School on Formal Methods for the Design of Computer, Communication, and Software Systems (SFM’07). LNCS, Vol. 4486. Springer,
Germany. https://doi.org/10.1007/978-3-540-72522-0

[48] Marco Bernardo, Rocco De Nicola, and Jane Hillston (Eds.). 2016. Formal Methods for the Quantitative Evaluation of Collective Adaptive

Systems: Advanced Lectures of the 16th International School on Formal Methods for the Design of Computer, Communication, and Software

Systems (SFM’16). LNCS, Vol. 9700. Springer, Germany. https://doi.org/10.1007/978-3-319-34096-8
[49] Gérard Berry, Amar Bouali, Xavier Fornari, Emmanuel Ledinot, Eric Nassor, and Robert de Simone. 2000. ESTEREL: a formal method

applied to avionic software development. Sci. Comput. Program. 36, 1 (2000), 5ś25. https://doi.org/10.1016/S0167-6423(99)00015-5
[50] Antonia Bertolino. 2007. Software Testing Research: Achievements, Challenges, Dreams. In Proceedings of the ICSE 2007 Workshop on

the Future of Software Engineering (FoSE’07), Lionel C. Briand and Alexander L. Wolf (Eds.). IEEE, USA, 85ś103. https://doi.org/10.1109/
FOSE.2007.25

[51] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development Ð Coq’Art: The Calculus of Inductive

Constructions. Springer, Germany. https://doi.org/10.1007/978-3-662-07964-5
[52] Aysu Betin Can, Tevik Bultan, Mikael Lindvall, Benjamin Lux, and Stefan Topp. 2007. Eliminating synchronization faults in air

traic control software via design for veriication with concurrency controllers. Autom. Softw. Eng. 14, 2 (2007), 129ś178. https:
//doi.org/10.1007/s10515-007-0008-2

[53] Machiel van der Bijl, Arend Rensink, and Jan Tretmans. 2003. Compositional Testing with ioco. In Proceedings of the 3rd International

Workshop on Formal Approaches to Testing of Software (FATES’03) (LNCS, Vol. 2931), Alexandre Petrenko and Andreas Ulrich (Eds.).
Springer, Germany, 86ś100. https://doi.org/10.1007/978-3-540-24617-6_7

[54] Lewis Binns. 2023. By computers, for computers: Improving scanner metrology software with generated code. https://www.linkedin.
com/pulse/computers-improving-scanner-metrology-software-code-lewis/

[55] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal Veriication of a C Compiler Front-End. In Proceedings on the 14th

International Symposium on Formal Methods (FM’06) (LNCS, Vol. 4085), Jayadev Misra, Tobias Nipkow, and Emil Sekerinski (Eds.).
Springer, Germany, 460ś475. https://doi.org/10.1007/11813040_31

[56] Hans Blom, Henrik Lönn, Frank Hagl, Yiannis Papadopoulos, Mark-Oliver Reiser, Carl-Johan Sjöstedt, De-Jiu Chen, and Ramin Tavakoli
Kolagari. 2013. EAST-ADL ś An Architecture Description Language for Automotive Software-Intensive Systems. White Paper.
https://maenad.eu/public/conceptpresentations/EAST-ADL_WhitePaper_M2.1.12.pdf

[57] Tommaso Bolognesi and Ed Brinksma. 1987. Introduction to the ISO Speciication Language LOTOS. Comput. Netw. 14 (1987), 25ś59.
https://doi.org/10.1016/0169-7552(87)90085-7

[58] Paulo Borba, Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock (Eds.). 2010. Testing Techniques in Software Engineering: Revised

Lectures of the 2nd Pernambuco Summer School on Software Engineering (PSSE’07). LNCS, Vol. 6153. Springer, Germany. https:
//doi.org/10.1007/978-3-642-14335-9

[59] Alexander Borgida, Maurizio Lenzerini, and Riccardo Rosati. 2007. Description Logics for Databases. In The Description Logic

Handbook: Theory, Implementation, and Applications, Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider (Eds.). Cambridge University Press, UK, Chapter 16, 500ś524. https://doi.org/10.1017/CBO9780511711787.018

[60] Aymane Bouzafour, Marc Renaudin, Hubert Garavel, Radu Mateescu, and Wendelin Serwe. 2018. Model-Checking Synthesizable
SystemVerilog Descriptions of Asynchronous Circuits. In 24th IEEE International Symposium on Asynchronous Circuits and Systems

(ASYNC’18). IEEE, USA, 34ś42. https://doi.org/10.1109/ASYNC.2018.00021
[61] Jonathan P. Bowen, Ricky W. Butler, David L. Dill, Robert L. Glass, David Gries, Anthony Hall, Michael G. Hinchey, C. Michael

Holloway, Daniel Jackson, Clif B. Jones, Michael J. Lutz, David L. Parnas, John M. Rushby, Jeannette M. Wing, and Pamela Zave. 1996.
An Invitation to Formal Methods. IEEE Comput. 29, 4 (1996), 16ś30. https://doi.org/10.1109/MC.1996.488298

[62] Jonathan P. Bowen and Michael G. Hinchey. 1995. Seven More Myths of Formal Methods. IEEE Softw. 12, 4 (1995), 34ś41. https:
//doi.org/10.1109/52.391826

[63] Jonathan P. Bowen and Michael G. Hinchey. 1995. Ten Commandments of Formal Methods. IEEE Comput. 28, 4 (1995), 56ś63.
https://doi.org/10.1109/2.375178

Form. Asp. Comput.

https://doi.org/10.1007/11757283
https://doi.org/10.1007/978-3-642-30982-3
https://doi.org/10.1007/978-3-319-07317-0
https://doi.org/10.1007/978-3-540-72522-0
https://doi.org/10.1007/978-3-319-34096-8
https://doi.org/10.1016/S0167-6423(99)00015-5
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/s10515-007-0008-2
https://doi.org/10.1007/s10515-007-0008-2
https://doi.org/10.1007/978-3-540-24617-6_7
https://www.linkedin.com/pulse/computers-improving-scanner-metrology-software-code-lewis/
https://www.linkedin.com/pulse/computers-improving-scanner-metrology-software-code-lewis/
https://doi.org/10.1007/11813040_31
https://maenad.eu/public/conceptpresentations/EAST-ADL_WhitePaper_M2.1.12.pdf
https://doi.org/10.1016/0169-7552(87)90085-7
https://doi.org/10.1007/978-3-642-14335-9
https://doi.org/10.1007/978-3-642-14335-9
https://doi.org/10.1017/CBO9780511711787.018
https://doi.org/10.1109/ASYNC.2018.00021
https://doi.org/10.1109/MC.1996.488298
https://doi.org/10.1109/52.391826
https://doi.org/10.1109/52.391826
https://doi.org/10.1109/2.375178


Formal Methods in Industry • 25

[64] Jonathan P. Bowen and Michael G. Hinchey. 2006. Ten Commandments of Formal Methods ...Ten Years Later. IEEE Comput. 39, 1
(2006), 40ś48. https://doi.org/10.1109/MC.2006.35

[65] Jonathan P. Bowen and Victoria Stavridou. 1993. The Industrial Take-up of Formal Methods in Safety-Critical and Other Areas: A
Perspective. In Proceedings of the 1st International Symposium of Formal Methods Europe (FME’93) (LNCS, Vol. 670), Jim Woodcock and
Peter Gorm Larsen (Eds.). Springer, Germany, 183ś195. https://doi.org/10.1007/BFb0024646

[66] Robert S. Boyer and J. Strother Moore. 1979. A Computational Logic Handbook. Perspectives in Computing, Vol. 23. Academic Press,
USA.

[67] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen, Thomas Noll, and Marco Roveri. 2009. The COMPASS
Approach: Correctness, Modelling and Performability of Aerospace Systems. In Proceedings of the 28th International Conference on

Computer Safety, Reliability, and Security (SAFECOMP’09) (LNCS, Vol. 5775), Bettina Buth, Gerd Rabe, and Till Seyfarth (Eds.). Springer,
Germany, 173ś186. https://doi.org/10.1007/978-3-642-04468-7_15

[68] Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires, David Jones, Greg Kimberly, Tyler Petri, Richard Robinson, and Stefano
Tonetta. 2015. Formal Design and Safety Analysis of AIR6110 Wheel Brake System. In Proceedings of the 27th International Conference

on Computer Aided Veriication (CAV’15) (LNCS, Vol. 9206), Daniel Kroening and Corina S. Pasareanu (Eds.). Springer, Germany, 518ś535.
https://doi.org/10.1007/978-3-319-21690-4_36

[69] Robert K. Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-Strength Veriication Tool. In Proceedings of the 22nd

International Conference on Computer Aided Veriication (CAV’10) (LNCS, Vol. 6174), Tayssir Touili, Byron Cook, and Paul B. Jackson
(Eds.). Springer, Germany, 24ś40. https://doi.org/10.1007/978-3-642-14295-6_5

[70] Manfred Broy, Achim Brucker, Alessandro Fantechi, Mario Gleirscher, Klaus Havelund, Markus Alexander Kuppe, Alexandra Mendes,
André Platzer, Jan Ringert, and Allison Sullivan. 2024. Does Every Computer Scientist Need to Know Formal Methods? Form. Asp.

Comput. (2024). https://doi.org/10.1145/36707
[71] Achim D. Brucker and Amy Stell. 2023. Verifying Feedforward Neural Networks for Classiication in Isabelle/HOL. In Proceedings of

the 25th International Symposium on Formal Methods (FM’23) (LNCS, Vol. 14000), Marsha Chechik, Joost-Pieter Katoen, and Martin
Leucker (Eds.). Springer, Germany, 427ś444. https://doi.org/10.1007/978-3-031-27481-7_24

[72] Jean-Marie Brunet. 2023. A Systematic Approach to Veriication & Validation Using Hardware-Assisted Veriication. Global Semi-
conductor Alliance. https://www.gsaglobal.org/forums/a-systematic-approach-to-veriication-validation-using-hardware-assisted-
veriication

[73] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio. 2020. Grand challenges in model-driven engineering: an
analysis of the state of the research. Softw. Syst. Model. 19, 1 (2020), 5ś13. https://doi.org/10.1007/S10270-019-00773-6

[74] Christopher Budd. 2013. Ten Years of Patch Tuesdays: Why It’s Time to Move On. GeekWire. https://www.geekwire.com/2013/ten-
years-patch-tuesdays-time-move/

[75] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger Wesselink, Anton Wijs, and
Tim A. C. Willemse. 2019. The mCRL2 Toolset for Analysing Concurrent Systems: Improvements in Expressivity and Usability. In
Proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’19) (LNCS,

Vol. 11428), T. Vojnar and L. Zhang (Eds.). Springer, Germany, 21ś39. https://doi.org/10.1007/978-3-030-17465-1_2
[76] Michael Butler, Thai Son Hoang, Alexander Raschke, and Klaus Reichl. 2020. Introduction to special section on the ABZ 2018 case study:

Hybrid ERTMS/ETCS Level 3. Int. J. Softw. Tools Technol. Transf. 22, 3 (2020), 249ś255. https://doi.org/10.1007/s10009-020-00562-3
[77] Michael Butler, Philipp Körner, Sebastian Krings, Thierry Lecomte, Michael Leuschel, Luis-Fernando Mejia, and Laurent Voisin. 2020.

The First Twenty-Five Years of Industrial Use of the B-Method. In Proceedings of the 25th International Conference on Formal Methods for

Industrial Critical Systems (FMICS’20) (LNCS, Vol. 12327), Maurice H. ter Beek and Dejan Ničković (Eds.). Springer, Germany, 189ś209.
https://doi.org/10.1007/978-3-030-58298-2_8

[78] Ricky W. Butler, George E. Hagen, and Jefrey M. Maddalon. 2013. The Chorus Conlict and Loss of Separation Resolution Algorithms.
Technical Report NASA/TMś2013-218030. NASA. https://ntrs.nasa.gov/citations/20140001006

[79] Gustavo Carvalho, Ana Cavalcanti, and Augusto Sampaio. 2016. Modelling timed reactive systems from natural-language requirements.
Form. Asp. Comput. 28, 5 (2016), 725ś765. https://doi.org/10.1007/S00165-016-0387-X

[80] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco
Roveri, and Stefano Tonetta. 2014. The nuXmv Symbolic Model Checker. In Proceedings of the 26th International Conference on

Computer Aided Veriication (CAV’14) (LNCS, Vol. 8559), Armin Biere and Roderick Bloem (Eds.). Springer, Germany, 334ś342. https:
//doi.org/10.1007/978-3-319-08867-9_22

[81] François Cerisier. 2023. How to build the future veriication engineers? Veriication Futures Conference (VF’23).
https://www.tessolve.com/wp-content/uploads/2023/06/2-Francois-Cerisier-2023-How-to-build-the-future-veriication-engineers-
Francois-Cerisier-AEDVICES-V1-1.pdf

[82] Antonio Cerone, Markus Roggenbach, James Davenport, Casey Denner, Marie Farrell, Magne Haveraaen, Faron Moller, Philipp Körner,
Sebastian Krings, Peter Csaba Ölveczky, Bernd-Holger Schlinglof, Nikolay Shilov, and Rustam Zhumagambetov. 2021. Rooting Formal
Methods Within Higher Education Curricula for Computer Science and Software Engineering ś A White Paper. In Revised Selected

Form. Asp. Comput.

https://doi.org/10.1109/MC.2006.35
https://doi.org/10.1007/BFb0024646
https://doi.org/10.1007/978-3-642-04468-7_15
https://doi.org/10.1007/978-3-319-21690-4_36
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/36707
https://doi.org/10.1007/978-3-031-27481-7_24
https://www.gsaglobal.org/forums/a-systematic-approach-to-verification-validation-using-hardware-assisted-verification
https://www.gsaglobal.org/forums/a-systematic-approach-to-verification-validation-using-hardware-assisted-verification
https://doi.org/10.1007/S10270-019-00773-6
https://www.geekwire.com/2013/ten-years-patch-tuesdays-time-move/
https://www.geekwire.com/2013/ten-years-patch-tuesdays-time-move/
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/s10009-020-00562-3
https://doi.org/10.1007/978-3-030-58298-2_8
https://ntrs.nasa.gov/citations/20140001006
https://doi.org/10.1007/S00165-016-0387-X
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://www.tessolve.com/wp-content/uploads/2023/06/2-Francois-Cerisier-2023-How-to-build-the-future-verification-engineers-Francois-Cerisier-AEDVICES-V1-1.pdf
https://www.tessolve.com/wp-content/uploads/2023/06/2-Francois-Cerisier-2023-How-to-build-the-future-verification-engineers-Francois-Cerisier-AEDVICES-V1-1.pdf


26 • M. H. ter Beek et al.

Papers of the 1st International Workshop on Formal Methods ś Fun for Everybody (FMFun’19) (CCIS, Vol. 1301), Antonio Cerone and
Markus Roggenbach (Eds.). Springer, Germany, 1ś26. https://doi.org/10.1007/978-3-030-71374-4_1

[83] William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary Modugno, David Notkin, and Jon Damon Reese. 1998.
Model Checking Large Software Speciications. IEEE Trans. Softw. Eng. 24, 7 (1998), 498ś520. https://doi.org/10.1109/32.708566

[84] Roderick Chapman and Florian Schanda. 2014. Are We There Yet? 20 Years of Industrial Theorem Proving with SPARK. In Proceedings

of the 5th International Conference on Interactive Theorem Proving (ITP’14) (LNCS, Vol. 8558), Gerwin Klein and Ruben Gamboa (Eds.).
Springer, Germany, 17ś26. https://doi.org/10.1007/978-3-319-08970-6_2

[85] Angelo Chiappini, Alessandro Cimatti, Luca Macchi, Oscar Rebollo, Marco Roveri, Angelo Susi, Stefano Tonetta, and Berardino Vittorini.
2010. Formalization and validation of a subset of the European Train Control System. In Proceedings of the 32nd International Conference

on Software Engineering (ICSE’10). ACM, USA, 109ś118. https://doi.org/10.1145/1810295.1810312
[86] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani,

and Armando Tacchella. 2002. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In Proceedings of the 14th International

Conference on Computer Aided Veriication (CAV’02) (LNCS, Vol. 2404), Ed Brinksma and Kim G. Larsen (Eds.). Springer, Germany,
359ś364. https://doi.org/10.1007/3-540-45657-0_29

[87] Edmund M. Clarke and E. Allen Emerson. 1981. Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal
Logic. In Proceedings of the 1981 Workshop on Logics of Programs (LNCS, Vol. 131), Dexter Kozen (Ed.). Springer, Germany, 52ś71.
https://doi.org/10.1007/BFB0025774

[88] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). 2018. Handbook of Model Checking. Springer,
Germany. https://doi.org/10.1007/978-3-319-10575-8

[89] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C Programs. In Proceedings of the 10th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’04) (LNCS, Vol. 2988), Kurt Jensen
and Andreas Podelski (Eds.). Springer, Germany, 168ś176. https://doi.org/10.1007/978-3-540-24730-2_15

[90] Edmund M. Clarke, Jeannette M. Wing, et al. 1996. Formal Methods: State of the Art and Future Directions. ACM Comput. Surv. 28, 4
(1996), 626ś643. https://doi.org/10.1145/242223.242257

[91] Rance Cleaveland, Joachim Parrow, and Bernhard Stefen. 1993. The Concurrency Workbench: A Semantics-Based Tool for the
Veriication of Concurrent Systems. ACM Trans. Program. Lang. Syst. 15, 1 (1993), 36ś72. https://doi.org/10.1145/151646.151648

[92] Rance Cleaveland, A. W. (Bill) Roscoe, and Scott A. Smolka. 2018. Process Algebra and Model Checking. In Handbook of Model Checking,
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Springer, Germany, Chapter 32, 1149ś1195.
https://doi.org/10.1007/978-3-319-10575-8_32

[93] Rance Cleaveland and Steve Sims. 1996. The NCSU Concurrency Workbench. In Proceedings of the 8th International Conference on

Computer Aided Veriication (CAV’96) (LNCS, Vol. 1102), Rajeev Alur and Thomas A. Henzinger (Eds.). Springer, Germany, 394ś397.
https://doi.org/10.1007/3-540-61474-5_87

[94] Christian Colombo and Gordon J. Pace. 2022. Runtime Veriication. Springer, Germany. https://doi.org/10.1007/978-3-031-09268-8
[95] Mathieu Comptier, Michael Leuschel, Luis-Fernando Mejia, Julien Molinero Perez, and Mareike Mutz. 2019. Property-Based Modelling

and Validation of a CBTC Zone Controller in Event-B. In Proceedings of the 3rd International Conference on Reliability, Safety, and

Security of Railway Systems: Modelling, Analysis, Veriication, and Certiication (RSSRail’19) (LNCS, Vol. 11495), Simon Collart-Dutilleul,
Thierry Lecomte, and Alexander B. Romanovsky (Eds.). Springer, Germany, 202ś212. https://doi.org/10.1007/978-3-030-18744-6_13

[96] Byron Cook. 2018. Formal Reasoning About the Security of Amazon Web Services. In Proceedings of the 30th International Conference

on Computer Aided Veriication (CAV’18) (LNCS, Vol. 10981), Hana Chockler and Georg Weissenbacher (Eds.). Springer, Germany, 38ś47.
https://doi.org/10.1007/978-3-319-96145-3_3

[97] Byron Cook. 2022. Automated reasoning’s scientiic frontiers. https://www.amazon.science/blog/automated-reasonings-scientiic-
frontiers

[98] Byron Cook, Kareem Khazem, Daniel Kroening, Serdar Tasiran, Michael Tautschnig, and Mark R. Tuttle. 2018. Model Checking Boot
Code from AWS Data Centers. In Proceedings of the 30th International Conference on Computer Aided Veriication (CAV’18) (LNCS,

Vol. 10982), Hana Chockler and GeorgWeissenbacher (Eds.). Springer, Germany, 467ś486. https://doi.org/10.1007/978-3-319-96142-2_28
[99] Jodie Cook. 2023. Shiny Object Syndrome: The Biggest Problem For Today’s Entrepreneurs. Forbes. https://www.forbes.com/sites/

jodiecook/2023/02/20/shiny-object-syndrome-the-biggest-problem-for-todays-entrepreneurs/?sh=5a90cb4b6709
[100] Thierry Coquand and Gérard P. Huet. 1985. Constructions: A Higher Order Proof System for Mechanizing Mathematics. In Proceedings

of the European Conference on Computer Algebra (EUROCAL’85) (LNCS, Vol. 203), Bruno Buchberger (Ed.). Springer, Germany, 151ś184.
https://doi.org/10.1007/3-540-15983-5_13

[101] Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, and Wendelin Serwe. 2009. Towards Performance Prediction of Compositional
Models in Industrial GALS Designs. In Proceedings of the 21st International Conference on Computer Aided Veriication (CAV’09) (LNCS,

Vol. 5643), Ahmed Bouajjani and Oded Maler (Eds.). Springer, Germany, 204ś218. https://doi.org/10.1007/978-3-642-02658-4_18
[102] Jean-Pierre Courtiat, Piotr Dembinski, Gerard J. Holzmann, Luigi Logrippo, Harry Rudin, and Pamela Zave. 1996. Formal methods after

15 years: Status and trends. Comput. Netw. ISDN Syst. 28, 13 (1996), 1845ś1855. https://doi.org/10.1016/0169-7552(96)00083-9

Form. Asp. Comput.

https://doi.org/10.1007/978-3-030-71374-4_1
https://doi.org/10.1109/32.708566
https://doi.org/10.1007/978-3-319-08970-6_2
https://doi.org/10.1145/1810295.1810312
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/BFB0025774
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/242223.242257
https://doi.org/10.1145/151646.151648
https://doi.org/10.1007/978-3-319-10575-8_32
https://doi.org/10.1007/3-540-61474-5_87
https://doi.org/10.1007/978-3-031-09268-8
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-319-96145-3_3
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers
https://doi.org/10.1007/978-3-319-96142-2_28
https://www.forbes.com/sites/jodiecook/2023/02/20/shiny-object-syndrome-the-biggest-problem-for-todays-entrepreneurs/?sh=5a90cb4b6709
https://www.forbes.com/sites/jodiecook/2023/02/20/shiny-object-syndrome-the-biggest-problem-for-todays-entrepreneurs/?sh=5a90cb4b6709
https://doi.org/10.1007/3-540-15983-5_13
https://doi.org/10.1007/978-3-642-02658-4_18
https://doi.org/10.1016/0169-7552(96)00083-9


Formal Methods in Industry • 27

[103] Patrick Cousot. 2021. Principles of Abstract Interpretation. MIT Press, USA. https://mitpress.mit.edu/9780262044905/principles-of-
abstract-interpretation/

[104] Russ Cox, Robert Griesemer, Rob Pike, Ian Lance Taylor, and Ken Thompson. 2022. The Go programming language and environment.
Commun. ACM 65, 5 (2022), 70ś78. https://doi.org/10.1145/3488716

[105] Braz Araujo da Silva Junior, Simone André da Costa Cavalheiro, Luciana Foss, and Júlia Veiga da Silva. 2023. Formal Speciication in
Basic Education: What Does It Take?. In Proceedings of the 53rd IEEE/ASEE International Conference on Frontiers in Education (FIE’23).
IEEE, USA, 1ś9. https://doi.org/10.1109/FIE58773.2023.10343074

[106] James B. Dabney, Julia M. Badger, and Pavan Rajagopal. 2021. Adding a Veriication View for an Autonomous Real-Time System
Architecture. In Proceedings of the 2021 AIAA SciTech Forum. AIAA, USA, Article 0566, 12 pages. https://doi.org/10.2514/6.2021-0566

[107] James B. Dabney, Julia M. Badger, and Pavan Rajagopal. 2023. Trustworthy Autonomy for Gateway Vehicle System Manager. In
Proceedings of the 14th IEEE Space Computing Conference (SCC’23). IEEE, USA, 57ś62. https://doi.org/10.1109/SCC57168.2023.00018

[108] Clara DaSilva, Babak Dehbonei, and Fernando Mejia. 1992. Formal speciication in the development of industrial applications: Subway
speed control system. In Proceedings of the IFIP TC6/WG6.1 5th International Conference on Formal Description Techniques for Distributed

Systems and Communication Protocols (FORTE’92) (IFIP Transactions, Vol. C-10), Michel Diaz and Roland Groz (Eds.). North-Holland,
The Netherlands, 199ś213.

[109] Alexandre David, Peter G. Jensen, Kim G. Larsen, Marius Mikucionis, and Jakob H. Taankvist. 2015. Uppaal Stratego. In Proceedings of

the 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’15) (LNCS, Vol. 9035),
Christel Baier and Cesare Tinelli (Eds.). Springer, Germany, 206ś211. https://doi.org/10.1007/978-3-662-46681-0_16

[110] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and Danny B. Poulsen. 2015. Uppaal SMC tutorial. Int. J. Softw. Tools
Technol. Transf. 17, 4 (2015), 397ś415. https://doi.org/10.1007/S10009-014-0361-Y

[111] Julien Delange. 2017. AADL In Practice: Design and Validate the Architecture of Critical Systems. Reblochon, France.
[112] David Delmas and Jean Souyris. 2007. Astrée: From Research to Industry. In Proceedings of the 14th International Symposium on Static

Analysis (SAS’07) (LNCS, Vol. 4634), Hanne Riis Nielson and Gilberto Filé (Eds.). Springer, Germany, 437ś451. https://doi.org/10.1007/978-
3-540-74061-2_27

[113] Edsger W. Dijkstra. 1968. A constructive approach to the problem of program correctness. BIT Numer. Math. 8, 3 (1968), 174ś186.
https://doi.org/10.1007/BF01933419

[114] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall, USA.
[115] David L. Dill. 1996. The Murphi Veriication System. In Proceedings of the 8th International Conference on Computer Aided Veriication

(CAV’96) (LNCS, Vol. 1102), Rajeev Alur and Thomas A. Henzinger (Eds.). Springer, Germany, 390ś393. https://doi.org/10.1007/3-540-
61474-5_86

[116] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling Static Analyses at Facebook. Commun.

ACM 62, 8 (2019), 62ś70. https://doi.org/10.1145/3338112
[117] Daniel Dollé, Didier Essamé, and Jérôme Falampin. 2003. B dans le transport ferroviaire: L’expérience de Siemens Transportation

Systems. Tech. Sci. Inform. 22, 1 (2003), 11ś32. https://doi.org/10.3166/tsi.22.11-32
[118] Brijesh Dongol, Catherine Dubois, Stefan Hallerstede, Eric Hehner, Carroll Morgan, Peter Müller, Leila Ribeiro, Alexandra Silva,

Graeme Smith, and Erik de Vink. 2024. On Formal Methods Thinking in Computer Science Education. Form. Asp. Comput. (2024).
https://doi.org/10.1145/36704

[119] Parasara Sridhar Duggirala, LeWang, Sayan Mitra, Mahesh Viswanathan, and César A. Muñoz. 2014. Temporal Precedence Checking for
SwitchedModels and Its Application to a Parallel Landing Protocol. In Proceedings of the 19th International Symposium on Formal Methods

(FM’14) (LNCS, Vol. 8442), Clif B. Jones, Pekka Pihlajasaari, and Jun Sun (Eds.). Springer, Germany, 215ś229. https://doi.org/10.1007/978-
3-319-06410-9_16

[120] Bruno Dutertre. 2011. Probabilistic Analysis of Distributed Fault-Tolerant Systems. Technical Report NASA/CRś2011-217090. NASA.
https://ntrs.nasa.gov/citations/20110011564

[121] Didier Essamé and Daniel Dollé. 2007. B in Large Scale Projects: The Canarsie Line CBTC Experience. In Proceedings of the 7th

International Conference of B Users (B’07) (LNCS, Vol. 4355), Jacques Julliand and Olga Kouchnarenko (Eds.). Springer, Germany, 252ś254.
https://doi.org/10.1007/11955757_21

[122] European Committee for Electrotechnical Standardization. 2011. CENELEC EN 50128: Railway applications ś Communication, signalling
and processing systems ś Software for railway control and protection systems. https://standards.globalspec.com/std/1678027/cenelec-
en-50128

[123] Marie Farrell, Matt Luckcuck, Oisín Sheridan, and Rosemary Monahan. 2022. FRETting About Requirements: Formalised Requirements
for an Aircraft Engine Controller. In Proceedings of the 28th International Working Conference on Requirements Engineering: Foundation

for Software Quality (REFSQ’22) (LNCS, Vol. 13216), Vincenzo Gervasi and Andreas Vogelsang (Eds.). Springer, Germany, 96ś111.
https://doi.org/10.1007/978-3-030-98464-9_9

[124] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and G. Edward Suh. 2017. Veriication of a Practical Hardware Security
Architecture Through Static Information Flow Analysis. In Proceedings of the 22nd International Conference on Architectural Support for

Form. Asp. Comput.

https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://doi.org/10.1145/3488716
https://doi.org/10.1109/FIE58773.2023.10343074
https://doi.org/10.2514/6.2021-0566
https://doi.org/10.1109/SCC57168.2023.00018
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/S10009-014-0361-Y
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/BF01933419
https://doi.org/10.1007/3-540-61474-5_86
https://doi.org/10.1007/3-540-61474-5_86
https://doi.org/10.1145/3338112
https://doi.org/10.3166/tsi.22.11-32
https://doi.org/10.1145/36704
https://doi.org/10.1007/978-3-319-06410-9_16
https://doi.org/10.1007/978-3-319-06410-9_16
https://ntrs.nasa.gov/citations/20110011564
https://doi.org/10.1007/11955757_21
https://standards.globalspec.com/std/1678027/cenelec-en-50128
https://standards.globalspec.com/std/1678027/cenelec-en-50128
https://doi.org/10.1007/978-3-030-98464-9_9


28 • M. H. ter Beek et al.

Programming Languages and Operating Systems (ASPLOS’17), Yunji Chen, Olivier Temam, and John Carter (Eds.). ACM, USA, 555ś568.
https://doi.org/10.1145/3037697.3037739

[125] Alessio Ferrari, Alessandro Fantechi, Gianluca Magnani, Daniele Grasso, and Matteo Tempestini. 2013. The Metrô Rio case study. Sci.
Comput. Program. 78, 7 (2013), 828ś842. https://doi.org/10.1016/j.scico.2012.04.003

[126] Alessio Ferrari, Franco Mazzanti, Davide Basile, and Maurice H. ter Beek. 2022. Systematic Evaluation and Usability Analysis of Formal
Methods Tools for Railway Signaling System Design. IEEE Trans. Softw. Eng. 48, 11 (2022), 4675ś4691. https://doi.org/10.1109/TSE.
2021.3124677

[127] Alessio Ferrari, Franco Mazzanti, Davide Basile, Maurice H. ter Beek, and Alessandro Fantechi. 2020. Comparing Formal Tools for
System Design: a Judgment Study. In Proceedings of the 42nd International Conference on Software Engineering (ICSE’20). ACM, USA,
62ś74. https://doi.org/10.1145/3377811.3380373

[128] Alessio Ferrari and Maurice H. ter Beek. 2023. Formal Methods in Railways: a Systematic Mapping Study. ACM Comput. Surv. 55, 4
(2023), 69:1ś69:37. https://doi.org/10.1145/3520480

[129] Felype Ferreira, Laís Neves, Michelle Silva, and Paulo Borba. 2010. TaRGeT: a Model Based Product Line Testing Tool. Tools
Session of the 1st Brazilian Conference on Software: Theory and Practice (CBSoft’10). https://twiki.cin.ufpe.br/twiki/pub/SPG/
SoftwareEstimationModels/TargetCBSOFT.pdf

[130] Larissa Ferreira, Sidney C. Nogueira, Lucas Lima, Liliane Fonseca, and Waldemar Ferreira. 2019. Initial indings on the evaluation of a
model-based testing tool in the test design process. In Proceedings of the 13th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM’19). IEEE, USA, 1ś6. https://doi.org/10.1109/ESEM.2019.8870140
[131] Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Cristina Seceleanu, Oscar Ljungkrantz, and Henrik Lönn. 2016. Simulink

to UPPAAL Statistical Model Checker: Analyzing Automotive Industrial Systems. In Proceedings of the 21st International Symposium

on Formal Methods (FM’16) (LNCS, Vol. 9995), John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, and Anna Philippou (Eds.).
Springer, Germany, 748ś756. https://doi.org/10.1007/978-3-319-48989-6_46

[132] Michael Fisher, Viviana Mascardi, Kristin Y. Rozier, Bernd-Holger Schlinglof, Michael Winikof, and Neil Yorke-Smith. 2021. Towards
a framework for certiication of reliable autonomous systems. Auton. Agents Multi Agent Syst. 35, 1 (2021), 8:1ś8:65. https://doi.org/10.
1007/s10458-020-09487-2

[133] Robert W. Floyd. 1967. Assigning Meanings to Programs. In Proceedings of Symposia in Applied Mathematics (Mathematical Aspects of

Computer Science, Vol. 19), J. T. Schwartz (Ed.). American Mathematical Society, USA, 19ś32.
[134] Song Gao, Bohua Zhan, Depeng Liu, Xuechao Sun, Yanan Zhi, David N. Jansen, and Lijun Zhang. 2021. Formal Veriication of Consensus

in the Taurus Distributed Database. In Proceedings of the 24th International Symposium on Formal Methods (FM’21) (LNCS, Vol. 13047),
Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan (Eds.). Springer, Germany, 741ś751. https://doi.org/10.1007/978-3-030-90870-
6_42

[135] Hubert Garavel and Susanne Graf. 2013. Formal Methods for Safe and Secure Computer Systems. BSI Study 875. Bundesamt für Sicherheit
in der Informationstechnik. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/formal_methods_study_
875/formal_methods_study_875.html

[136] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. 2013. CADP 2011: a toolbox for the construction and analysis of
distributed processes. Int. J. Softw. Tools Technol. Transf. 15, 2 (2013), 89ś107. https://doi.org/10.1007/s10009-012-0244-z

[137] Hubert Garavel, Frédéric Lang, and Wendelin Serwe. 2017. From LOTOS to LNT. In ModelEd, TestEd, TrustEd (LNCS, Vol. 10500),
Joost-Pieter Katoen, Rom Langerak, and Arend Rensink (Eds.). Springer, Germany, 3ś26. https://doi.org/10.1007/978-3-319-68270-9_1

[138] Hubert Garavel, Maurice H. ter Beek, and Jaco van de Pol. 2020. The 2020 Expert Survey on Formal Methods. In Proceedings of the 25th

International Conference on Formal Methods for Industrial Critical Systems (FMICS’20) (LNCS, Vol. 12327), Maurice H. ter Beek and Dejan
Ničković (Eds.). Springer, Germany, 3ś69. https://doi.org/10.1007/978-3-030-58298-2_1

[139] Marco Gario, Alessandro Cimatti, Cristian Mattarei, Stefano Tonetta, and Kristin Y. Rozier. 2016. Model Checking at Scale: Automated
Air Traic Control Design Space Exploration. In Proceedings of the 28th International Conference on Computer Aided Veriication (CAV’16)

(LNCS, Vol. 9780), Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer, Germany, 3ś22. https://doi.org/10.1007/978-3-319-41540-6_1
[140] Stephen J. Garland and John V. Guttag. 1988. LP: The Larch Prover. In Proceedings of the 9th International Conference on Automated

Deduction (CADE’88) (LNCS, Vol. 310), Ewing L. Lusk and Ross A. Overbeek (Eds.). Springer, Germany, 748ś749. https://doi.org/10.
1007/BFB0012879

[141] Dimitra Giannakopoulou, Falk Howar, Malte Isberner, Todd Lauderdale, Zvonimir Rakamaric, and Vishwanath Raman. 2014. Taming
Test Inputs for Separation Assurance. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering

(ASE’14). ACM, USA, 373ś384. https://doi.org/10.1145/2642937.2642940
[142] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Julian Rhein, Johann Schumann, and Nija Shi. 2020. Formal

Requirements Elicitation with FRET. In Joint Proceedings of the Co-Located Events of the 26th International Conference on Requirements

Engineering: Foundation for Software Quality (REFSQ-JP’20) (CEUR Proceedings, Vol. 2584), Mehrdad Sabetzadeh, Andreas Vogelsang,
Sallam Abualhaija, Markus Borg, Fabiano Dalpiaz, Maya Daneva, Nelly Condori-Fernández, Xavier Franch, Davide Fucci, Vincenzo
Gervasi, Eduard C. Groen, Renata S. S. Guizzardi, Andrea Herrmann, Jennifer Horkof, Luisa Mich, Anna Perini, and Angelo Susi (Eds.).

Form. Asp. Comput.

https://doi.org/10.1145/3037697.3037739
https://doi.org/10.1016/j.scico.2012.04.003
https://doi.org/10.1109/TSE.2021.3124677
https://doi.org/10.1109/TSE.2021.3124677
https://doi.org/10.1145/3377811.3380373
https://doi.org/10.1145/3520480
https://twiki.cin.ufpe.br/twiki/pub/SPG/SoftwareEstimationModels/TargetCBSOFT.pdf
https://twiki.cin.ufpe.br/twiki/pub/SPG/SoftwareEstimationModels/TargetCBSOFT.pdf
https://doi.org/10.1109/ESEM.2019.8870140
https://doi.org/10.1007/978-3-319-48989-6_46
https://doi.org/10.1007/s10458-020-09487-2
https://doi.org/10.1007/s10458-020-09487-2
https://doi.org/10.1007/978-3-030-90870-6_42
https://doi.org/10.1007/978-3-030-90870-6_42
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/formal_methods_study_875/formal_methods_study_875.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/formal_methods_study_875/formal_methods_study_875.html
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-319-41540-6_1
https://doi.org/10.1007/BFB0012879
https://doi.org/10.1007/BFB0012879
https://doi.org/10.1145/2642937.2642940


Formal Methods in Industry • 29

CEUR-WS.org, Germany, 6 pages. https://ceur-ws.org/Vol-2584/PT-paper4.pdf
[143] Thomas Gibson-Robinson, Philip J. Armstrong, Alexandre Boulgakov, and A.W. Roscoe. 2014. FDR3 ś AModern Reinement Checker for

CSP. In Proceedings of the 20th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’14)

(LNCS, Vol. 8413), Erika Ábrahám and Klaus Havelund (Eds.). Springer, Germany, 187ś201. https://doi.org/10.1007/978-3-642-54862-8_13
[144] Mario Gleirscher and Diego Marmsoler. 2020. Formal Methods in Dependable Systems Engineering: A Survey of Professionals from

Europe and North America. Empir. Softw. Eng. 25, 6 (2020), 4473ś4546. https://doi.org/10.1007/s10664-020-09836-5
[145] Stefania Gnesi and Tiziana Margaria (Eds.). 2013. Formal Methods for Industrial Critical Systems: A Survey of Applications. Wiley, UK.

https://doi.org/10.1002/9781118459898
[146] Patrice Godefroid. 2020. Fuzzing: Hack, Art, and Science. Commun. ACM 63, 2 (2020), 70ś76. https://doi.org/10.1145/3363824
[147] Patrice Godefroid, Jonathan de Halleux, Aditya V. Nori, Sriram K. Rajamani, Wolfram Schulte, Nikolai Tillmann, and Michael Y. Levin.

2008. Automating Software Testing Using Program Analysis. IEEE Softw. 25, 5 (2008), 30ś37. https://doi.org/10.1109/MS.2008.109
[148] Patrice Godefroid, Shuvendu K. Lahiri, and Cindy Rubio-González. 2011. Statically Validating Must Summaries for Incremental

Compositional Dynamic Test Generation. In Proceedings of the 18th International Symposium on Static Analysis (SAS’11) (LNCS,

Vol. 6887), Eran Yahav (Ed.). Springer, Germany, 112ś128. https://doi.org/10.1007/978-3-642-23702-7_12
[149] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated Whitebox Fuzz Testing. In Proceedings of the 15th Network

and Distributed System Security Symposium (NDSS’08). The Internet Society, USA, 16 pages. https://www.ndss-symposium.org/
ndss2008/automated-whitebox-fuzz-testing/

[150] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2012. SAGE: Whitebox Fuzzing for Security Testing. Commun. ACM 55, 3
(2012), 40ś44. https://doi.org/10.1145/2093548.2093564

[151] Adriano Gomes, Alexandre Mota, Augusto Sampaio, Felipe Ferri, and Edson Watanabe. 2012. Constructive model-based analysis for
safety assessment. Int. J. Softw. Tools Technol. Transf. 14, 6 (2012), 673ś702. https://doi.org/10.1007/S10009-012-0238-X

[152] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. 1979. Edinburgh LCF: A Mechanised Logic of Computation. LNCS,
Vol. 78. Springer, Germany. https://doi.org/10.1007/3-540-09724-4

[153] Stijn de Gouw, Frank S. de Boer, Richard Bubel, Reiner Hähnle, Jurriaan Rot, and Dominic Steinhöfel. 2019. Verifying OpenJDK’s Sort
Method for Generic Collections. J. Autom. Reason. 62, 1 (2019), 93ś126. https://doi.org/10.1007/S10817-017-9426-4

[154] Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner Hähnle. 2015. OpenJDK’s Java.utils.Collection.sort() Is Broken:
The Good, the Bad and theWorst Case. In Proceedings of the 27th International Conference on Computer Aided Veriication (CAV’15) (LNCS,

Vol. 9206), Daniel Kroening and Corina S. Pasareanu (Eds.). Springer, Germany, 273ś289. https://doi.org/10.1007/978-3-319-21690-4_16
[155] David Greve, Matthew Wilding, and W. Mark Vanleet. 2005. High Assurance Formal Security Policy Modeling. In Proceedings of the

17th Systems and Software Technology Conference (SSTC’05). IEEE, USA.
[156] Alex Groce, Klaus Havelund, Gerard J. Holzmann, Rajeev Joshi, and Ru-Gang Xu. 2014. Establishing light software reliability: Testing,

model checking, constraint-solving, monitoring and learning. Ann. Math. Artif. Intell. 70, 4 (2014), 315ś349. https://doi.org/10.1007/
s10472-014-9408-8

[157] Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and Analysis of Communicating Systems. MIT Press, USA. https:
//mitpress.mit.edu/9780262547871/modeling-and-analysis-of-communicating-systems/

[158] Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina Lundqvist. 2019. Towards a Two-Layer Framework for Verifying
Autonomous Vehicles. In Proceedings of the 11th International NASA Formal Methods Symposium (NFM’19) (LNCS, Vol. 11460), Julia M.
Badger and Kristin Yvonne Rozier (Eds.). Springer, Germany, 186ś203. https://doi.org/10.1007/978-3-030-20652-9_12

[159] Gérard Guiho and Claude Hennebert. 1990. SACEM Software Validation. In Proceedings of the 12th International Conference on Software

Engineering (ICSE’90). IEEE, USA, 186ś191.
[160] George Hagen, Ricky Butler, and Jefrey Maddalon. 2011. Stratway: A modular approach to strategic conlict resolution. In Proceedings

of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. AIAA, USA, Article 6892, 13 pages. https:
//doi.org/10.2514/6.2011-6892

[161] Anthony Hall. 1990. Seven Myths of Formal Methods. IEEE Softw. 7, 5 (1990), 11ś19. https://doi.org/10.1109/52.57887
[162] Anthony Hall. 2007. Realising the Beneits of Formal Methods. J. Univers. Comput. Sci. 13, 5 (2007), 669ś678. https://doi.org/10.3217/jucs-

013-05-0669
[163] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. 2004. Guide to Elliptic Curve Cryptography. Springer, Germany. https:

//doi.org/10.1007/b97644
[164] Dominik Hansen, Michael Leuschel, Philipp Körner, Sebastian Krings, Thomas Naulin, Nader Nayeri, David Schneider, and Frank

Skowron. 2020. Validation and real-life demonstration of ETCS hybrid level 3 principles using a formal B model. Int. J. Softw. Tools
Technol. Transf. 22, 3 (2020), 315ś332. https://doi.org/10.1007/s10009-020-00551-6

[165] David S. Hardin, Eric W. Smith, and William D. Young. 2006. A Robust Machine Code Proof Framework for Highly Secure Applications.
In Proceedings of the 6th International Workshop on the ACL2 Prover and its Applications (ACL2’06). ACM, USA, 11ś20. https:
//doi.org/10.1145/1217975.1217978

Form. Asp. Comput.

https://ceur-ws.org/Vol-2584/PT-paper4.pdf
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/s10664-020-09836-5
https://doi.org/10.1002/9781118459898
https://doi.org/10.1145/3363824
https://doi.org/10.1109/MS.2008.109
https://doi.org/10.1007/978-3-642-23702-7_12
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1007/S10009-012-0238-X
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/S10817-017-9426-4
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/s10472-014-9408-8
https://doi.org/10.1007/s10472-014-9408-8
https://mitpress.mit.edu/9780262547871/modeling-and-analysis-of-communicating-systems/
https://mitpress.mit.edu/9780262547871/modeling-and-analysis-of-communicating-systems/
https://doi.org/10.1007/978-3-030-20652-9_12
https://doi.org/10.2514/6.2011-6892
https://doi.org/10.2514/6.2011-6892
https://doi.org/10.1109/52.57887
https://doi.org/10.3217/jucs-013-05-0669
https://doi.org/10.3217/jucs-013-05-0669
https://doi.org/10.1007/b97644
https://doi.org/10.1007/b97644
https://doi.org/10.1007/s10009-020-00551-6
https://doi.org/10.1145/1217975.1217978
https://doi.org/10.1145/1217975.1217978


30 • M. H. ter Beek et al.

[166] David Harel. 1987. Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8, 3 (1987), 231ś274. https://doi.org/10.
1016/0167-6423(87)90035-9

[167] John Harrison. 2023. s2n-bignum GitHub repository. https://github.com/awslabs/s2n-bignum
[168] Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, and Stijn de Gouw. 2022. Verifying OpenJDK’s LinkedList using

KeY. Int. J. Softw. Tools Technol. Transf. 24, 5 (2022), 783ś802. https://doi.org/10.1007/s10009-022-00679-7
[169] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman,

Kalpesh Kapoor, Paul J. Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy A. Vilkomir, Martin R. Woodward, and Hussein Zedan.
2009. Using formal speciications to support testing. ACM Comput. Surv. 41, 2 (2009), 9:1ś9:76. https://doi.org/10.1145/1459352.1459354

[170] C. A. R. (Tony) Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576ś580. https:
//doi.org/10.1145/363235.363259

[171] C. A. R. (Tony) Hoare. 1985. Communicating Sequential Processes. Prentice Hall, USA.
[172] Gerard J. Holzmann. 2003. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, USA.
[173] Gerard J. Holzmann. 2014. Mars Code. Commun. ACM 57I, 2 (2014), 64ś73. https://doi.org/10.1145/2560217.2560218
[174] Marieke Huisman, Dilian Gurov, and Alexander Malkis. 2020. Formal Methods: From Academia to Industrial Practice ś A Travel Guide.

arXiv:2002.07279
[175] Marieke Huisman and Anton Wijs. 2023. Concise Guide to Software Veriication: From Model Checking to Annotation Checking. Springer,

Germany. https://doi.org/10.1007/978-3-031-30167-4
[176] Intel. 2011. Intel Identiies Chipset Design Error, Implementing Solution. Press release. https://intc.com/news-events/press-

releases/detail/688/intel-identiies-chipset-design-error-implementing-solution
[177] International Electrotechnical Commission. 2023. IEC TC 107: Processmanagement for avionics. https://www.iec.ch/dyn/www/f?p=103:

7:0::::FSP_ORG_ID:1304
[178] International Electrotechnical Commission. 2023. IEC TC 97: Electrical installations for lighting and beaconing of aerodromes.

https://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID:1294
[179] International Organization for Standardization. 2018. ISO 26262: Road vehicles Ð Functional safety Ð Parts 1ś12. https://www.iso.org/

standard/68383.html
[180] International Organization for Standardization and International Electrotechnical Commission. 2017. ISO/IEC 19514 - Information

technology ś Object management group systems modeling language (OMG SysML). https://www.iso.org/standard/65231.html
[181] Raj Jain. 1991. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and

Modeling. Wiley, UK. https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+
Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361

[182] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Ryan W. Gardner, Aurora C. Schmidt, Erik Zawadzki, and André Platzer.
2015. A Formally Veriied Hybrid System for the Next-Generation Airborne Collision Avoidance System. In Proceedings of the 21st

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’15) (LNCS, Vol. 9035), Christel
Baier and Cesare Tinelli (Eds.). Springer, Germany, 21ś36. https://doi.org/10.1007/978-3-662-46681-0_2

[183] Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards Certiied Separate Compilation for Concurrent
Programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’19). ACM,
USA, 111ś125. https://doi.org/10.1145/3314221.3314595

[184] He Jifeng. 1994. From CSP to Hybrid Systems. In A Classical Mind: Essays in Honour of C. A. R. Hoare, A. W. (Bill) Roscoe (Ed.). Prentice
Hall, UK, 171ś189.

[185] Chris Johannsen, Phillip H. Jones, Brian Kempa, Kristin Y. Rozier, and Pei Zhang. 2023. R2U2 Version 3.0: Re-Imagining a Toolchain
for Speciication, Resource Estimation, and Optimized Observer Generation for Runtime Veriication in Hardware and Software. In
Proceedings of the 35th International Conference on Computer Aided Veriication (CAV’23) (LNCS, Vol. 13966), Constantin Enea and Akash
Lal (Eds.). Springer, Germany, 483ś497. https://doi.org/10.1007/978-3-031-37709-9_23

[186] Chris Johannsen, Brian Kempa, Phillip H. Jones, Kristin Y. Rozier, and Tichakorn Wongpiromsarn. 2023. Impossible Made Possible:
Encoding Intractable Speciications via Implied Domain Constraints. In Proceedings of the 28th International Conference on Formal

Methods for Industrial Critical Systems (FMICS’23) (LNCS, Vol. 14290), Alessandro Cimatti and Laura Titolo (Eds.). Springer, Germany,
151ś169. https://doi.org/10.1007/978-3-031-43681-9_9

[187] Stephen C. Johnson. 1977. Lint, a C program checker. Technical Report 65. Bell Labs.
[188] Cliford B. Jones. 1991. Systematic software development using VDM (2 ed.). Prentice Hall, USA.
[189] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2021. Safe Systems Programming in Rust. Commun. ACM 64, 4

(2021), 144ś152. https://doi.org/10.1145/3418295
[190] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore. 2000. Computer-Aided Reasoning: An Approach. Advances in Formal

Methods, Vol. 3. Springer, Germany. https://doi.org/10.1007/978-1-4615-4449-4
[191] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore (Eds.). 2000. Computer-Aided Reasoning: ACL2 Case Studies. Advances in

Formal Methods, Vol. 4. Springer, Germany. https://doi.org/10.1007/978-1-4757-3188-0

Form. Asp. Comput.

https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://github.com/awslabs/s2n-bignum
https://doi.org/10.1007/s10009-022-00679-7
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2560217.2560218
https://arxiv.org/abs/2002.07279
https://doi.org/10.1007/978-3-031-30167-4
https://intc.com/news-events/press-releases/detail/688/intel-identifies-chipset-design-error-implementing-solution
https://intc.com/news-events/press-releases/detail/688/intel-identifies-chipset-design-error-implementing-solution
https://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID:1304
https://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID:1304
https://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID:1294
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/65231.html
https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361
https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1007/978-3-031-37709-9_23
https://doi.org/10.1007/978-3-031-43681-9_9
https://doi.org/10.1145/3418295
https://doi.org/10.1007/978-1-4615-4449-4
https://doi.org/10.1007/978-1-4757-3188-0


Formal Methods in Industry • 31

[192] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David A. Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2010. seL4: Formal Veriication of an Operating-
System Kernel. Commun. ACM 53, 6 (2010), 107ś115. https://doi.org/10.1145/1743546.1743574

[193] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A. Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal Veriication of an OS Kernel.
In Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP’09), Jeanna Neefe Matthews and Thomas E. Anderson
(Eds.). ACM, USA, 207ś220. https://doi.org/10.1145/1629575.1629596

[194] Nikolai Kosmatov and Julien Signoles. 2016. Frama-C, A Collaborative Framework for C Code Veriication: Tutorial Synopsis. In
Proceedings of the 16th International Conference on Runtime Veriication (RV’16) (LNCS, Vol. 10012), Yliès Falcone and César Sánchez
(Eds.). Springer, Germany, 92ś115. https://doi.org/10.1007/978-3-319-46982-9_7

[195] Jörg Kreiker, Andrzej Tarlecki, Moshe Y. Vardi, and Reinhard Wilhelm. 2011. Modeling, Analysis, and Veriication ś The Formal
Methods Manifesto 2010. Dagstuhl Manifestos 1, 1 (2011), 21ś40. https://doi.org/10.4230/DAGMAN.1.1.21

[196] Abderahman Kriouile and Wendelin Serwe. 2015. Using a Formal Model to Improve Veriication of a Cache-Coherent System-on-Chip.
In Proceedings of the 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’15)

(LNCS, Vol. 9035), Christel Baier and Cesare Tinelli (Eds.). Springer, Germany, 708ś722. https://doi.org/10.1007/978-3-662-46681-0_62
[197] Amruth N. Kumar, Rajendra K. Raj, Sherif G. Aly, Monica D. Anderson, Brett A. Becker, Richard L. Blumenthal, Eric Eaton, Susan L.

Epstein, Michael Goldweber, Pankaj Jalote, Douglas Lea, Michael Oudshoorn, Marcelo Pias, Susan Reiser, Christian Servin, Rahul Simha,
Titus Winters, and Qiao Xiang. 2024. Computer Science Curricula 2023. ACM, IEEE, and AAAI, USA. https://doi.org/10.1145/3664191

[198] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2007. Stochastic Model Checking. In Formal Methods for Performance

Evaluation: Advanced Lectures of the 7th International School on Formal Methods for the Design of Computer, Communication, and Software

Systems (SFM’07) (LNCS, Vol. 4486), Marco Bernardo and Jane Hillston (Eds.). Springer, Germany, 220ś270. https://doi.org/10.1007/978-
3-540-72522-0_6

[199] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Veriication of Probabilistic Real-Time Systems. In
Proceedings of the 23rd International Conference on Computer Aided Veriication (CAV’11) (LNCS, Vol. 6806), Ganesh Gopalakrishnan and
Shaz Qadeer (Eds.). Springer, Germany, 585ś591. https://doi.org/10.1007/978-3-642-22110-1_47

[200] Marta Z. Kwiatkowska and David Parker. 2012. Advances in Probabilistic Model Checking. In Software Safety and Security: Tools for

Analysis and Veriication, Tobias Nipkow, Orna Grumberg, and Benedikt Hauptmann (Eds.). NATO Science for Peace and Security
Series, Vol. 33. IOS Press, The Netherlands, 126ś151. https://doi.org/10.3233/978-1-61499-028-4-126

[201] Leslie Lamport. 1980. łSometimež is Sometimes łNot Neverž: On the Temporal Logic of Programs. In Proceedings of the 7th ACM

Symposium on Principles of Programming Languages (POPL’80). ACM, USA, 174ś185. https://doi.org/10.1145/567446.567463
[202] Etienne Lantreibecq and Wendelin Serwe. 2014. Formal analysis of a hardware dynamic task dispatcher with CADP. Sci. Comput.

Program. 80 (2014), 130ś149. https://doi.org/10.1016/j.scico.2013.01.003
[203] Brian R. Larson, Patrice Chalin, and John Hatclif. 2013. BLESS: Formal Speciication and Veriication of Behaviors for Embedded

Systems with Software. In Proceedings of the 5th International NASA Formal Methods Symposium (NFM’13) (LNCS, Vol. 7871), Guillaume
Brat, Neha Rungta, and Arnaud Venet (Eds.). Springer, Germany, 276ś290. https://doi.org/10.1007/978-3-642-38088-4_19

[204] Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 Years of Automated Evolution in the Linux Kernel. In Proceedings of the 2018

USENIX Annual Technical Conference (USENIX ATC’18). USENIX Association, USA, 601ś613. https://www.usenix.org/conference/atc18/
presentation/lawall

[205] Julia Lawall and Gilles Muller. 2022. Automating Program Transformation with Coccinelle. In Proceedings of the 14th International NASA

Formal Methods Symposium (NFM’22) (LNCS, Vol. 13260), Jyotirmoy V. Deshmukh, Klaus Havelund, and Ivan Perez (Eds.). Springer,
Germany, 71ś87. https://doi.org/10.1007/978-3-031-06773-0_4

[206] Thierry Lecomte, Lilian Burdy, and Michael Leuschel. 2020. Formally Checking Large Data Sets in the Railways. arXiv:1210.6815
Proceedings of the Workshop on the experience of and advances in developing dependable systems in Event-B (DS-Event-B’12).

[207] Thierry Lecomte, David Déharbe, Étienne Prun, and Erwan Mottin. 2017. Applying a Formal Method in Industry: A 25-Year Trajectory.
In Proceedings of the 20th Brazilian Symposium on Formal Methods: Foundations and Applications (SBMF’17) (LNCS, Vol. 10623), Simone
Cavalheiro and José Fiadeiro (Eds.). Springer, Germany, 70ś87. https://doi.org/10.1007/978-3-319-70848-5_6

[208] Axel Legay, Anna Lukina, Louis-Marie Traonouez, Junxing Yang, Scott A. Smolka, and Radu Grosu. 2019. Statistical Model Checking.
In Computing and Software Science: State of the Art and Perspectives, Bernhard Stefen and Gerhard J. Woeginger (Eds.). LNCS, Vol. 10000.
Springer, Germany, 478ś504. https://doi.org/10.1007/978-3-319-91908-9_23

[209] K. Rustan M. Leino. 2023. Program Proofs. MIT Press, USA. https://mitpress.mit.edu/9780262546232/program-proofs/
[210] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saarimäki, Savanna Lujan, and Fabio Palomba. 2023. A critical comparison on six static

analysis tools: Detection, agreement, and precision. J. Syst. Softw. 198 (2023), 111575. https://doi.org/10.1016/J.JSS.2022.111575
[211] Michael Leuschel and Michael J. Butler. 2008. ProB: an automated analysis toolset for the B method. Int. J. Softw. Tools Technol. Transf.

10, 2 (2008), 185ś203. https://doi.org/10.1007/s10009-007-0063-9

Form. Asp. Comput.

https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-3-319-46982-9_7
https://doi.org/10.4230/DAGMAN.1.1.21
https://doi.org/10.1007/978-3-662-46681-0_62
https://doi.org/10.1145/3664191
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.3233/978-1-61499-028-4-126
https://doi.org/10.1145/567446.567463
https://doi.org/10.1016/j.scico.2013.01.003
https://doi.org/10.1007/978-3-642-38088-4_19
https://www.usenix.org/conference/atc18/presentation/lawall
https://www.usenix.org/conference/atc18/presentation/lawall
https://doi.org/10.1007/978-3-031-06773-0_4
https://arxiv.org/abs/1210.6815
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-91908-9_23
https://mitpress.mit.edu/9780262546232/program-proofs/
https://doi.org/10.1016/J.JSS.2022.111575
https://doi.org/10.1007/s10009-007-0063-9


32 • M. H. ter Beek et al.

[212] Michael Leuschel, Jérôme Falampin, Fabian Fritz, and Daniel Plagge. 2011. Automated property veriication for large scale B models
with ProB. Form. Asp. Comput. 23, 6 (2011), 683ś709. https://doi.org/10.1007/s00165-010-0172-1

[213] Nancy G. Leveson. 2017. The Therac-25: 30 Years Later. IEEE Comput. 50, 11 (2017), 8ś11. https://doi.org/10.1109/MC.2017.4041349
[214] Nancy G. Leveson and Clark S. Turner. 1993. An Investigation of the Therac-25 Accidents. IEEE Comput. 26, 7 (1993), 18ś41.

https://doi.org/10.1109/MC.1993.274940
[215] Henrik Lönn. 2019. Model Based Continuous Integration of Automotive Embedded Systems. In Proceedings of the 13th MODPROD

Workshop 2019: Cyber-Physical Product Development (Linköping Electronic Press Workshop and Conference Collection, Vol. 21). Linköping
University, Sweden, 36 pages. https://wcc.ep.liu.se/index.php/MODPROD/article/view/116

[216] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. 2015. ReSA: An ontology-based requirement speciication language
tailored to automotive systems. In Proceedings of the 10th International Symposium on Industrial Embedded Systems (SIES’15). IEEE, USA,
1ś10. https://doi.org/10.1109/SIES.2015.7185035

[217] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. 2016. ReSA Tool: Structured Requirements Speciication and SAT-based
Consistency-checking. In Proceedings of the 18th Federated Conference on Computer Science and Information Systems (FedCSIS’16) (ACSIS,

Vol. 8), Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki (Eds.). IEEE, USA, 1737ś1746. https://doi.org/10.15439/2016F404
[218] Raluca Marinescu, Henrik Kaijser, Marius Mikucionis, Cristina Seceleanu, Henrik Lönn, and Alexandre David. 2014. Analyzing

Industrial Architectural Models by Simulation and Model-Checking. In Revised Selected Papers of the 3rd International Workshop on

Formal Techniques for Safety-Critical Systems (FTSCS’14) (CCIS, Vol. 476), Cyrille Artho and Peter Csaba Ölveczky (Eds.). Springer,
Germany, 189ś205. https://doi.org/10.1007/978-3-319-17581-2_13

[219] Nadja Marko, Eike Möhlmann, Dejan Ničković, Jürgen Niehaus, Peter Priller, and Martijn Rooker. 2021. Challenges of engineering safe
and secure highly automated vehicles: Whitepaper. arXiv:2103.03544

[220] Lina Marsso, Radu Mateescu, and Wendelin Serwe. 2018. TESTOR: A Modular Tool for On-the-Fly Conformance Test Case Generation.
In Proceedings of the 24th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’18)

(LNCS, Vol. 10806), Dirk Beyer and Marieke Huisman (Eds.). Springer, Germany, 211ś228. https://doi.org/10.1007/978-3-319-89963-3_13
[221] Radu Mateescu, Wendelin Serwe, Aymane Bouzafour, and Marc Renaudin. 2020. Modeling an Asynchronous Circuit Dedicated to

the Protection Against Physical Attacks. In Proceedings of the 4th Workshop on Models for Formal Analysis of Real Systems (MARS’20)

(EPTCS, Vol. 316), Ansgar Fehnker and Hubert Garavel (Eds.). Open Publishing Association, Australia, 200ś239. https://doi.org/10.4204/
EPTCS.316.8

[222] Cristian Mattarei, Alessandro Cimatti, Marco Gario, Stefano Tonetta, and Kristin Y. Rozier. 2015. Comparing Diferent Functional
Allocations in Automated Air Traic Control Design. In Proceedings of the 15th Conference on Formal Methods in Computer-Aided Design

(FMCAD’15), Roope Kaivola and Thomas Wahl (Eds.). IEEE, USA, 112ś119. https://doi.org/10.1109/FMCAD.2015.7542260
[223] Franco Mazzanti, Alessio Ferrari, and Giorgio O. Spagnolo. 2018. Towards formal methods diversity in railways: an experience report

with seven frameworks. Int. J. Softw. Tools Technol. Transf. 20, 3 (2018), 263ś288. https://doi.org/10.1007/s10009-018-0488-3
[224] Peter C. Mehlitz. 2008. Trust Your Model ś Verifying Aerospace System Models with Java™ Pathinder. In Proceedings of the 29th IEEE

Aerospace Conference (AERO’08). IEEE, USA, 1ś11. https://doi.org/10.1109/AERO.2008.4526573
[225] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors.

ACM Trans. Comput. Syst. 9, 1 (1991), 21ś65. https://doi.org/10.1145/103727.103729
[226] Bertrand Meyer. 2008. Seven Principles of Software Testing. IEEE Comp. 41, 8 (2008), 99ś101. https://doi.org/10.1109/MC.2008.306
[227] Steven P. Miller. 2012. Lessons from Twenty Years of Industrial Formal Methods. In Proceedings of the 20th High Conidence Software

and Systems Conference (HCSS’12). Cyber-Physical Systems Virtual Organization, USA, 25 pages. http://cps-vo.org/node/3434
[228] Robin Milner. 1980. A Calculus of Communicating Systems. LNCS, Vol. 92. Springer, Germany. https://doi.org/10.1007/3-540-10235-3
[229] Gordon E. Moore. 1965. Cramming more components onto integrated circuits. Electronics 38, 8 (1965), 114ś117. Reprinted in Proc. IEEE

86, 1 (1998), 82ś85. https://doi.org/10.1109/jproc.1998.658762.
[230] Carroll Morgan. 1990. Programming from Speciications. Prentice-Hall, USA.
[231] Joseph M. Morris. 1987. A Theoretical Basis for Stepwise Reinement and the Programming Calculus. Sci. Comput. Program. 9, 3 (1987),

287ś306. https://doi.org/10.1016/0167-6423(87)90011-6
[232] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Eicient SMT Solver. In Proceedings of the 14th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS’08) (LNCS, Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.).
Springer, Germany, 337ś340. https://doi.org/10.1007/978-3-540-78800-3_24

[233] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In Proceedings of the 28th

International Conference on Automated Deduction (CADE’21) (LNCS, Vol. 12699), André Platzer and Geof Sutclife (Eds.). Springer,
Germany, 625ś635. https://doi.org/10.1007/978-3-030-79876-5_37

[234] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and Benjamin Monate. 2013. Testing or Formal Veriication: DO-178C
Alternatives and Industrial Experience. IEEE Softw. 30, 3 (2013), 50ś57. https://doi.org/10.1109/MS.2013.43

Form. Asp. Comput.

https://doi.org/10.1007/s00165-010-0172-1
https://doi.org/10.1109/MC.2017.4041349
https://doi.org/10.1109/MC.1993.274940
https://wcc.ep.liu.se/index.php/MODPROD/article/view/116
https://doi.org/10.1109/SIES.2015.7185035
https://doi.org/10.15439/2016F404
https://doi.org/10.1007/978-3-319-17581-2_13
https://arxiv.org/abs/2103.03544
https://doi.org/10.1007/978-3-319-89963-3_13
https://doi.org/10.4204/EPTCS.316.8
https://doi.org/10.4204/EPTCS.316.8
https://doi.org/10.1109/FMCAD.2015.7542260
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.1109/AERO.2008.4526573
https://doi.org/10.1145/103727.103729
https://doi.org/10.1109/MC.2008.306
http://cps-vo.org/node/3434
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1109/jproc.1998.658762
https://doi.org/10.1016/0167-6423(87)90011-6
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1109/MS.2013.43


Formal Methods in Industry • 33

[235] Cesar Munoz, Radu Siminiceanu, Victor A. Carreno, and Gilles Dowek. 2005. KB3D Reference Manual. Technical Report NASA/TM-
2005-213769. NASA. https://ntrs.nasa.gov/citations/20050186553

[236] César A. Muñoz, Victor Carreño, and Gilles Dowek. 2006. Formal Analysis of the Operational Concept for the Small Aircraft
Transportation System. In Rigorous Development of Complex Fault-Tolerant Systems (LNCS, Vol. 4157), Michael J. Butler, Clif B. Jones,
Alexander B. Romanovsky, and Elena Troubitsyna (Eds.). Springer, Germany, 306ś325. https://doi.org/10.1007/11916246_16

[237] Anthony Narkawicz, César A. Muñoz, and Gilles Dowek. 2012. Provably correct conlict prevention bands algorithms. Sci. Comput.

Program. 77, 10-11 (2012), 1039ś1057. https://doi.org/10.1016/j.scico.2011.07.002
[238] Monty Newborn. 2001. Automated Theorem Proving. Springer, Germany. https://doi.org/10.1007/978-1-4613-0089-2
[239] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuf. 2015. How Amazon Web Services

Uses Formal Methods. Commun. ACM 58, 4 (2015), 66ś73. https://doi.org/10.1145/2699417
[240] Flemming Nielson and Hanne Riis Nielson. 2019. Formal Methods: An Appetizer. Springer, Germany. https://doi.org/10.1007/978-3-030-

05156-3
[241] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel (Eds.). 2002. Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS,

Vol. 2283. Springer, Germany. https://doi.org/10.1007/3-540-45949-9
[242] Sidney Nogueira, Emanuela Cartaxo, Dante Torres, Eduardo Aranha, and Rafael Marques. 2011. Model Based Test Generation: An

Industrial Experience. In Proceedings of the 1st Brazilian Workshop on Systematic and Automated Software Testing (SAST’07). SBC, Brazil,
6 pages.

[243] Sidney Nogueira, Augusto Sampaio, and Alexandre Mota. 2014. Test generation from state based use case models. Form. Asp. Comput.

26 (2014), 441ś490. https://doi.org/10.1007/s00165-012-0258-z
[244] Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha

Bhat, Yuzhong Wen, Haibo Chen, Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: Push-Button Veriication and Optimization for
Synchronization Primitives on Weak Memory Models. In Proceedings of the 26th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS’21). ACM, USA, 530ś545. https://doi.org/10.1145/3445814.3446748
[245] Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL (2020), 10:1ś10:32. https://doi.org/10.1145/3371078
[246] Gerard O’Regan. 2017. Concise Guide to Formal Methods: Theory, Fundamentals and Industry Applications. Springer, Germany.

https://doi.org/10.1007/978-3-319-64021-1
[247] AmmarOsaiweran,Mathijs Schuts, Jozef Hooman, Jan Friso Groote, and Bart J. van Rijnsoever. 2016. Evaluating the efect of a lightweight

formal technique in industry. Int. J. Softw. Tools Technol. Transf. 18, 1 (2016), 93ś108. https://doi.org/10.1007/S10009-015-0374-1
[248] Sam Owre, John M. Rushby, and Natarajan Shankar. 1992. PVS: A Prototype Veriication System. In Proceedings of the 11th International

Conference on Automated Deduction (CADE’92) (LNCS, Vol. 607), Deepak Kapur (Ed.). Springer, Germany, 748ś752. https://doi.org/10.
1007/3-540-55602-8_217

[249] David L. Parnas. 2010. Really Rethinking ‘Formal Methods’. IEEE Comput. 43, 1 (2010), 28ś34. https://doi.org/10.1109/MC.2010.22
[250] Zhaoguang Peng, Yu Lu, Alice Miller, Chris W. Johnson, and Tingdi Zhao. 2013. A Probabilistic Model Checking Approach to Analysing

Reliability, Availability, and Maintainability of a Single Satellite System. In Proceedings of the 7th UKSim/AMSS European Modelling

Symposium (EMS’13). IEEE, USA, 611ś616. https://doi.org/10.1109/EMS.2013.102
[251] Ivan Perez, Frank Dedden, and Alwyn Goodloe. 2020. Copilot 3. Technical Report NASA/TMś2020ś220587. NASA. https://ntrs.nasa.

gov/citations/20200003164
[252] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies in software

engineering: An update. Inf. Softw. Technol. 64 (2015), 1ś18. https://doi.org/10.1016/j.infsof.2015.03.007
[253] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. 2010. Copilot: A Hard Real-Time Runtime Monitor. In Proceedings of

the 1st International Conference on Runtime Veriication (RV’10) (LNCS, Vol. 6418), Howard Barringer, Yliès Falcone, Bernd Finkbeiner,
Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.). Springer, Germany, 345ś359.
https://doi.org/10.1007/978-3-642-16612-9_26

[254] André Platzer. 2018. Logical Foundations of Cyber-Physical Systems. Springer, Germany. https://doi.org/10.1007/978-3-319-63588-0
[255] André Platzer and Jan-David Quesel. 2008. KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description). In

Proceedings of the 4th International Joint Conference on Automated Reasoning (IJCAR’08) (LNCS, Vol. 5195), Alessandro Armando, Peter
Baumgartner, and Gilles Dowek (Eds.). Springer, Germany, 171ś178. https://doi.org/10.1007/978-3-540-71070-7_15

[256] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science

(FOCS’77). IEEE, USA, 46ś57. https://doi.org/10.1109/SFCS.1977.32
[257] Radio Technical Commission for Aeronautics (RTCA). 1992. DO-178B: Software Considerations in Airborne Systems and Equipment

Certiication. https://www.rtca.org/products/
[258] Radio Technical Commission for Aeronautics (RTCA). 2000. DO-254: Design Assurance Guidance for Airborne Electronic Hardware.

https://www.rtca.org/products/
[259] Radio Technical Commission for Aeronautics (RTCA). 2011. DO-333: Formal Methods Supplement to DO-178C and DO-278A.

https://www.rtca.org/content/standards-guidance-materials

Form. Asp. Comput.

https://ntrs.nasa.gov/citations/20050186553
https://doi.org/10.1007/11916246_16
https://doi.org/10.1016/j.scico.2011.07.002
https://doi.org/10.1007/978-1-4613-0089-2
https://doi.org/10.1145/2699417
https://doi.org/10.1007/978-3-030-05156-3
https://doi.org/10.1007/978-3-030-05156-3
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/s00165-012-0258-z
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-319-64021-1
https://doi.org/10.1007/S10009-015-0374-1
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1109/MC.2010.22
https://doi.org/10.1109/EMS.2013.102
https://ntrs.nasa.gov/citations/20200003164
https://ntrs.nasa.gov/citations/20200003164
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1109/SFCS.1977.32
https://www.rtca.org/products/
https://www.rtca.org/products/
https://www.rtca.org/content/standards-guidance-materials


34 • M. H. ter Beek et al.

[260] Radio Technical Commission for Aeronautics (RTCA). 2012. DO-178C/ED-12C: Software Considerations in Airborne Systems and
Equipment Certiication. https://www.rtca.org/products/

[261] Sarnath Ramnath and Stephen Walk. 2024. Structuring Formal Methods into the Undergraduate Computer Science Curriculum. In
Proceedings of the 16th International NASA Formal Methods Symposium (NFM’24) (LNCS, Vol. 14627), Nathaniel Benz, Divya Gopinath,
and Nija Shi (Eds.). Springer, Germany, 399ś405. https://doi.org/10.1007/978-3-031-60698-4_24

[262] Goutham Rao. 2022. Veriication and Validation in VLSI. ChipEdge Technologies. https://chipedge.com/veriication-and-validation-in-
vlsi

[263] Anne Remke and Mariëlle Stoelinga (Eds.). 2014. Stochastic Model Checking: Advanced Lectures of the International Autumn School

on Rigorous Dependability Analysis Using Model Checking Techniques for Stochastic Systems (ROCKS’12). LNCS, Vol. 8453. Springer,
Germany. https://doi.org/10.1007/978-3-662-45489-3

[264] Alexandre Riazanov and Andrei Voronkov. 1999. Vampire. In Proceedings of the 16th International Conference on Automated Deduction

(CADE’99) (LNCS, Vol. 1632), Harald Ganzinger (Ed.). Springer, Germany, 292ś296. https://doi.org/10.1007/3-540-48660-7_26
[265] Xavier Rival and Kwangkeun Yi. 2020. Introduction to Static Analysis. MIT Press, USA. https://mitpress.mit.edu/9780262043410/

introduction-to-static-analysis/
[266] J. Alan Robinson and Andrei Voronkov (Eds.). 2001. Handbook of Automated Reasoning. Elsevier, The Netherlands. https://www.

sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
[267] Luis R. Rodriguez and Julia Lawall. 2015. Increasing Automation in the Backporting of Linux Drivers Using Coccinelle. In Proceedings

of the 11th European Dependable Computing Conference (EDCC’15). IEEE, USA, 132ś143. https://doi.org/10.1109/EDCC.2015.23
[268] Markus Roggenbach, Antonio Cerone, Bernd-Holger Schlinglof, Gerardo Schneider, and Siraj Ahmed Shaikh. 2022. Formal Methods for

Software Engineering: Languages, Methods, Application Domains. Springer, Germany. https://doi.org/10.1007/978-3-030-38800-3
[269] A. W. (Bill) Roscoe. 1997. The Theory and Practice of Concurrency. Prentice Hall, USA.
[270] Kristin Y. Rozier. 2011. Linear Temporal Logic Symbolic Model Checking. Comput. Sci. Rev. 5, 2 (2011), 163ś203. https://doi.org/10.

1016/j.cosrev.2010.06.002
[271] Kristin Y. Rozier. 2016. Speciication: The Biggest Bottleneck in Formal Methods and Autonomy. In Proceedings of the 8th Working

Conference on Veriied Software: Theories, Tools, and Experiments (VSTTE’16) (LNCS, Vol. 9971), Marsha Chechik and Sandrine Blazy
(Eds.). Springer, Germany, 1ś19. https://doi.org/10.1007/978-3-319-48869-1_2

[272] Kristin Y. Rozier. 2019. From Simulation to Runtime Veriication and Back: Connecting Single-Run Veriication Techniques. In
Proceedings of the 13th Spring Simulation Conference (SpringSim’19). IEEE, USA, 1ś10. https://doi.org/10.23919/SpringSim.2019.8732915

[273] Kristin Y. Rozier and Johann Schumann. 2017. R2U2: Tool Overview. In Proceedings of the International Workshop on Competitions,

Usability, Benchmarks, Evaluation, and Standardisation for Runtime Veriication Tools (RV-CuBES’17) (Kalpa Publications in Computing,

Vol. 3), Giles Reger and Klaus Havelund (Eds.). EasyChair, UK, 138ś156. https://doi.org/10.29007/5pch
[274] Harry Rudin, Colin H. West, and Pitro Zairopulo. 1978. Automated Protocol Validation: One Chain of Development. Comput. Networks

2 (1978), 373ś380. https://doi.org/10.1016/0376-5075(78)90016-8
[275] Neha Rungta. 2022. A Billion SMT Queries a Day. In Proceedings of the 34th International Conference on Computer Aided Veriication

(CAV’22) (LNCS, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.). Springer, Germany, 3ś18. https://doi.org/10.1007/978-3-031-13185-
1_1

[276] John Rushby. 1993. Formal Methods and the Certiication of Critical Systems. Technical Report SRI-CSL-93-7. Computer Science
Laboratory, SRI International. http://www.csl.sri.com/papers/csl-93-7/

[277] Caitlin Sadowski, Jefrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin Winter. 2015. Tricorder: Building a Program Analysis
Ecosystem. In Proceedings of the 37th International Conference on Software Engineering (ICSE’15). IEEE, USA, 598ś608. https://doi.org/
10.1109/ICSE.2015.76

[278] SAE International. 2022. Architecture Analysis & Design Language (AADL). https://doi.org/10.4271/AS5506D
[279] Monika Seisenberger, Maurice H. ter Beek, Xiuyi Fan, Alessio Ferrari, Anne E. Haxthausen, Phillip James, Andrew Lawrence, Bas

Luttik, Jaco van de Pol, and Simon Wimmer. 2022. Safe and Secure Future AI-Driven Railway Technologies: Challenges for Formal
Methods in Railway. In Proceedings of the 11th International Symposium on Leveraging Applications of Formal Methods, Veriication

and Validation: Practice (ISoLA’22) (LNCS, Vol. 13704), Tiziana Margaria and Bernhard Stefen (Eds.). Springer, Germany, 246ś268.
https://doi.org/10.1007/978-3-031-19762-8_20

[280] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing Engine for C. In Proceedings of the 10th European

Software Engineering Conference held jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering

(ESEC/FSE’05). ACM, USA, 263ś272. https://doi.org/10.1145/1081706.1081750
[281] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. 2009. Formal Veriication of Avionics Software Products. In Proceedings

of the 2nd World Congress on Formal Methods (FM’09) (LNCS, Vol. 5850), Ana Cavalcanti and Dennis Dams (Eds.). Springer, Germany,
532ś546. https://doi.org/10.1007/978-3-642-05089-3_34

[282] J. Michael Spivey. 1988. Understanding Z: A Speciication Language and its Formal Semantics. Cambridge Tracts in Theoretical Computer
Science, Vol. 3. Cambridge University Press, UK.

Form. Asp. Comput.

https://www.rtca.org/products/
https://doi.org/10.1007/978-3-031-60698-4_24
https://chipedge.com/verification-and-validation-in-vlsi
https://chipedge.com/verification-and-validation-in-vlsi
https://doi.org/10.1007/978-3-662-45489-3
https://doi.org/10.1007/3-540-48660-7_26
https://mitpress.mit.edu/9780262043410/introduction-to-static-analysis/
https://mitpress.mit.edu/9780262043410/introduction-to-static-analysis/
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://doi.org/10.1109/EDCC.2015.23
https://doi.org/10.1007/978-3-030-38800-3
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.23919/SpringSim.2019.8732915
https://doi.org/10.29007/5pch
https://doi.org/10.1016/0376-5075(78)90016-8
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
http://www.csl.sri.com/papers/csl-93-7/
https://doi.org/10.1109/ICSE.2015.76
https://doi.org/10.1109/ICSE.2015.76
https://doi.org/10.4271/AS5506D
https://doi.org/10.1007/978-3-031-19762-8_20
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-642-05089-3_34


Formal Methods in Industry • 35

[283] Tirumale Sreemani and Joanne M. Atlee. 1996. Feasibility of Model Checking Software Requirements: A Case Study. In Proceedings of

11th Annual Conference on Computer Assurance (COMPASS’96). IEEE, USA, 77ś88. https://doi.org/10.1109/CMPASS.1996.507877
[284] Bernhard Stefen. 2024. Rance Cleaveland: a life for formal methods. Int. J. Softw. Tools Technol. Transf. 26, 3 (2024), 247ś248.

https://doi.org/10.1007/s10009-024-00746-1
[285] Ulrich Stern and David L. Dill. 1995. Automatic Veriication of the SCI Cache Coherence Protocol. In Proceedings of the 8th IFIP WG 10.5

Advanced Research Working Conference on Correct Hardware Design and Veriication Methods (CHARME’95) (LNCS, Vol. 987), Paolo
Camurati and Hans Eveking (Eds.). Springer, Germany, 21ś34. https://doi.org/10.1007/3-540-60385-9_2

[286] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force Vulnerability Discovery. Addison-Wesley, USA.
[287] Martyn Thomas. 1990. The role of formal methods in developing safety-critical software. In Proceedings of the IEE Colloquium on Safety

Critical Software in Vehicle and Traic Control. IET, UK, 9/1ś9/3. https://doi.org/10.1016/0141-9331(90)90127-H
[288] Mufy Thomas. 1994. A Proof of Incorrectness using LP: the Editing Problem from the Therac-25. High Integrity Systems 1, 1 (1994),

35ś49.
[289] Mufy Thomas. 1994. The Story of the Therac-25 in LOTOS. High Integrity Systems 1, 1 (1994), 3ś17.
[290] Jan Tretmans. 2017. On the Existence of Practical Testers. In ModelEd, TestEd, TrustEd (LNCS, Vol. 10500), Joost-Pieter Katoen, Rom

Langerak, and Arend Rensink (Eds.). Springer, Germany, 87ś106. https://doi.org/10.1007/978-3-319-68270-9_5
[291] Kishor S. Trivedi. 2016. Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Wi-

ley, UK. https://www.wiley.com/en-us/Probability+and+Statistics+with+Reliability%2C+Queuing%2C+and+Computer+Science+
Applications%2C+2nd+Edition-p-x000204691

[292] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio Lerda. 2003. Model Checking Programs. Autom. Softw.

Eng. 10, 2 (2003), 203ś232. https://doi.org/10.1023/A:1022920129859
[293] Werner Vogels. 2021. Diving Deep on S3 Consistency. https://www.allthingsdistributed.com/2021/04/s3-strong-consistency.html
[294] Christian von Essen and Dimitra Giannakopoulou. 2014. Analyzing the Next Generation Airborne Collision Avoidance System. In

Proceedings of the 20th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’14) (LNCS,

Vol. 8413), Erika Ábrahám and Klaus Havelund (Eds.). Springer, Germany, 620ś635. https://doi.org/10.1007/978-3-642-54862-8_54
[295] Shuling Wang, Naijun Zhan, and Liang Zou. 2015. An Improved HHL Prover: An Interactive Theorem Prover for Hybrid Systems. In

Proceedings of the 17th International Conference on Formal Engineering Methods (ICFEM’15) (LNCS, Vol. 9407), Michael J. Butler, Sylvain
Conchon, and Fatiha Zaïdi (Eds.). Springer, Germany, 382ś399. https://doi.org/10.1007/978-3-319-25423-4_25

[296] Colin H. West. 1978. General Technique for Communications Protocol Validation. IBM J. Res. Dev. 22, 4 (1978), 393ś404. https:
//doi.org/10.1147/rd.224.0393

[297] TheWhite House. 2024. Back to the Building Blocks: A Path Toward Secure andMeasurable Software. Technical Report. White House Oice
of the National Cyber Director (ONCD). https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

[298] Jeannette M. Wing. 1990. A Speciier’s Introduction to Formal Methods. IEEE Comput. 23, 9 (1990), 8ś24. https://doi.org/10.1109/2.58215
[299] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009. Formal methods: Practice and experience. ACM Comput.

Surv. 41, 4 (2009), 19:1ś19:36. https://doi.org/10.1145/1592434.1592436
[300] Bohua Zhan, Yi Lv, Shuling Wang, Gehang Zhao, Jifeng Hao, Hong Ye, and Bican Xia. 2022. Compositional Veriication of Interacting

Systems Using Event Monads. In Proceedings of the 13th International Conference on Interactive Theorem Proving (ITP’22) (LIPIcs,

Vol. 237), June Andronick and Leonardo de Moura (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 33:1ś33:21.
https://doi.org/10.4230/LIPIcs.ITP.2022.33

[301] Zhen Zhang, Wendelin Serwe, Jian Wu, Tomohiro Yoneda Hao Zheng, and Chris Myers. 2016. An improved fault-tolerant routing
algorithm for a Network-on-Chip derived with formal analysis. Sci. Comput. Program. 118 (2016), 24ś39. https://doi.org/10.1016/j.scico.
2016.01.002

[302] Yang Zhao and Kristin Y. Rozier. 2014. Formal speciication and veriication of a coordination protocol for an automated air traic
control system. Sci. Comput. Program. 96 (2014), 337ś353. https://doi.org/10.1016/j.scico.2014.04.002

[303] Yang Zhao and Kristin Y. Rozier. 2014. Probabilistic model checking for comparative analysis of automated air traic control
systems. In Proceedings of the 33rd IEEE/ACM International Conference on Computer-Aided Design (ICCAD’14). IEEE, USA, 690ś695.
https://doi.org/10.1109/ICCAD.2014.7001427

Received 19 September 2023; revised 13 July 2024; accepted 15 August 2024

Form. Asp. Comput.

https://doi.org/10.1109/CMPASS.1996.507877
https://doi.org/10.1007/s10009-024-00746-1
https://doi.org/10.1007/3-540-60385-9_2
https://doi.org/10.1016/0141-9331(90)90127-H
https://doi.org/10.1007/978-3-319-68270-9_5
https://www.wiley.com/en-us/Probability+and+Statistics+with+Reliability%2C+Queuing%2C+and+Computer+Science+Applications%2C+2nd+Edition-p-x000204691
https://www.wiley.com/en-us/Probability+and+Statistics+with+Reliability%2C+Queuing%2C+and+Computer+Science+Applications%2C+2nd+Edition-p-x000204691
https://doi.org/10.1023/A:1022920129859
https://www.allthingsdistributed.com/2021/04/s3-strong-consistency.html
https://doi.org/10.1007/978-3-642-54862-8_54
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1147/rd.224.0393
https://doi.org/10.1147/rd.224.0393
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://doi.org/10.1109/2.58215
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.4230/LIPIcs.ITP.2022.33
https://doi.org/10.1016/j.scico.2016.01.002
https://doi.org/10.1016/j.scico.2016.01.002
https://doi.org/10.1016/j.scico.2014.04.002
https://doi.org/10.1109/ICCAD.2014.7001427

	Abstract
	1 Introduction
	2 Formal Methods and Tools
	2.1 What are Formal Methods?
	2.2 Overview of Formal Methods and Tools

	3 Formal Methods in Industry
	3.1 Summary of Recent Literature
	3.2 Formal Methods for Railways
	3.3 Formal Methods for Automotive
	3.4 Formal Methods for Aerospace
	3.5 Formal Methods for Operating Systems
	3.6 Formal Methods for Cloud Security and e-Commerce
	3.7 Formal Methods for Hardware Design
	3.8 Formal Methods for Lithography Manufacturing
	3.9 Formal Testing of Mobile Devices from Natural Language Requirements and Other Stories from Brazil

	4 Educating for Formal Methods in Industry
	5 Conclusion
	Acknowledgments
	References

